Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor

被引:70
作者
Xin, Guoxiang [1 ]
Wang, Yanhui [1 ]
Liu, Xiaoxu [1 ,2 ]
Zhang, Jinhui [1 ]
Wang, Yafei [1 ]
Huang, Junjie [1 ]
Zang, Jianbing [1 ]
机构
[1] Yanshan Univ, Coll Mat Sci & Engn, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Dept Phys, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
self-supporting graphene; electrochemical intercalation; PANI; supercapacitor; HIGH-PERFORMANCE SUPERCAPACITOR; CORE-SHELL STRUCTURE; CARBON NANOTUBE; OXIDE/POLYANILINE COMPOSITE; ELECTROCHEMICAL CAPACITANCE; FUEL-CELLS; ANODE; OXIDE; ELECTROPOLYMERIZATION;
D O I
10.1016/j.electacta.2015.03.181
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A graphene-based composite was prepared by the in-situ growth of a self-supporting graphene (SSG) on a flexible graphite sheet (FGS) via electrochemical intercalation of FGS and then the electrodeposition of a thin, homogeneous, and conformal polyaniline (PANI) film. The maximum areal capacitance of 1.36 F cm(-2) and specific capacitance based on PANI of 491.3 F g(-1) were achieved for the prepared FGS-SSG/PANI composite. The good cycling stability of FGS-SSG/PANI was proved by cyclic voltammetry at a scan rate of 50 mV s(-1) for 3000 cycles. The symmetric supercapacitor device assembled using FGS-SSG/PANI composite electrodes exhibited a high energy density of 46 W h kg(-1) at a power density of 275 W kg(-1) on the basis of the total mass of PANI (similar to 10% of the total mass of the flexible electrodes). The good electrochemical properties indicate that the FGS-SSG/PANI is a promising flexible electrode for supercapacitors. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 261
页数:8
相关论文
共 40 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 2010, Angew. Chem
[3]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[4]   Flexible graphite for gasketing, adsorption, electromagnetic interference shielding, vibration damping, electrochemical applications, and stress sensing [J].
Chung, DDL .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2000, 9 (02) :161-163
[5]   Chemically grafted graphene-polyaniline composite for application in supercapacitor [J].
Gao, Zhiyong ;
Wang, Feng ;
Chang, Jiuli ;
Wu, Dapeng ;
Wang, Xiaorui ;
Wang, Xin ;
Xu, Fang ;
Gao, Shuyan ;
Jiang, Kai .
ELECTROCHIMICA ACTA, 2014, 133 :325-334
[6]   A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor [J].
He, Xinping ;
Gao, Bo ;
Wang, Guibao ;
Wei, Jiatong ;
Zhao, Chun .
ELECTROCHIMICA ACTA, 2013, 111 :210-215
[7]   Carbon materials for electrochemical capacitors [J].
Inagaki, Michio ;
Konno, Hidetaka ;
Tanaike, Osamu .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :7880-7903
[8]  
Janaky C, 2014, PROG POLYM IN PRESS, DOI [10.1016/j.progpolymsci.2014.10.003, DOI 10.1016/J.PR0GP0LYMSCI.2014.10.003]
[9]   Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells [J].
Jhan, Jing-Yi ;
Huang, Yu-Wei ;
Hsu, Chun-Han ;
Teng, Hsisheng ;
Kuo, Daniel ;
Kuo, Ping-Lin .
ENERGY, 2013, 53 :282-287
[10]   An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. [J].
Jiang, Xiaoqing ;
Setodoi, Sunao ;
Fukumoto, Saki ;
Imae, Ichiro ;
Komaguchi, Kenji ;
Yano, Jun ;
Mizota, Haruo ;
Harima, Yutaka .
CARBON, 2014, 67 :662-672