Recovery Algorithms for Pooled RT-qPCR Based Covid-19 Screening

被引:2
|
作者
Bharadwaja, Sameera H. [1 ]
Murthy, Chandra R. [1 ]
机构
[1] Indian Inst Sci, Dept ECE, Bangalore 560012, Karnataka, India
关键词
Testing; COVID-19; Signal processing algorithms; Diseases; Protocols; Standards; Noise measurement; RT-qPCR; Covid-19; SARS-CoV-2; Group Testing; Compressed Sensing; Sparse Signal Recovery;
D O I
10.1109/TSP.2022.3198179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of sparse signal recovery in a non-adaptive pool-test setting using quantitative measurements from a non-linear model. The quantitative measurements are obtained using the reverse transcription (quantitative) polymerase chain reaction (RT-qPCR) test, which is the standard test used to detect Covid-19. Each quantitative measurement refers to the cycle threshold, a proxy for the viral load in the test sample. We propose two novel, robust recovery algorithms based on alternating direction method of multipliers and block coordinate descent to recover the individual sample cycle thresholds and hence determine the sick individuals, given the pooled sample cycle thresholds and the pooling matrix. We numerically evaluate the normalized mean squared error, false positive rate, false negative rate, and the maximum sparsity levels up to which error-free recovery is possible. We also demonstrate the advantage of using quantitative measurements (as opposed to binary outcomes) in non-adaptive pool testing methods in terms of the testing rate using publicly available data on Covid-19 testing. The simulation results show the effectiveness of the proposed algorithms.
引用
收藏
页码:4353 / 4368
页数:16
相关论文
共 50 条
  • [1] RT-qPCR Testing and Performance Metrics in the COVID-19 Era
    Bustin, Stephen A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [2] Comparison of the Rapid Antigen Testing Method With RT-qPCR for the Diagnosis of COVID-19
    Pandey, Ashok Kumar
    Mohanty, Aroop
    Hada, Vivek
    Rath, Rama S.
    Kumar, Subodh
    Kishore, Surekha
    Kant, Rajni
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (08)
  • [3] Evaluation of COVID-19 RT-qPCR Test in Multi sample Pools
    Yelin, Idan
    Aharony, Noga
    Tamar, Einat Shaer
    Argoetti, Amir
    Messer, Esther
    Berenbaum, Dina
    Shafran, Einat
    Kuzli, Areen
    Gandali, Nagham
    Shkedi, Omer
    Hashimshony, Tamar
    Mandel-Gutfreund, Yael
    Halberthal, Michael
    Geffen, Yuval
    Szwarcwort-Cohen, Moran
    Kishony, Roy
    CLINICAL INFECTIOUS DISEASES, 2020, 71 (16) : 2073 - 2078
  • [4] Original RT-qPCR investigation of post-mortem tissues during COVID-19
    Berdygulova, Zhanna
    Maltseva, Elina
    Perfilyeva, Yuliya
    Nizkorodova, Anna
    Zhigailov, Andrey
    Naizabayeva, Dinara
    Ostapchuk, Yekaterina O.
    Kuatbekova, Saltanat
    Dosmagambet, Zhaniya
    Kuatbek, Moldir
    Bissenbay, Akerke
    Cherusheva, Alena
    Mashzhan, Akzhigit
    Abdolla, Nurshat
    Ashimbekov, Sanzhar
    Ismagulova, Gulnara
    Dmitrovskiy, Andrey
    Mamadaliyev, Seidigapbar
    Skiba, Yuriy
    JOURNAL OF APPLIED BIOMEDICINE, 2024, 22 (02) : 115 - 122
  • [5] Predictive factors of COVID-19 in patients with negative RT-qPCR
    Lopez de la Iglesia, J.
    Fernandez-Villa, T.
    Rivero, A.
    Carvajal, A.
    Bay Simon, E.
    Martinez Martinez, M.
    Arguello, H.
    Puente, H.
    Fernandez Vazquez, J. P.
    MEDICINA DE FAMILIA-SEMERGEN, 2020, 46 : 6 - 11
  • [6] True or false: what are the factors that influence COVID-19 diagnosis by RT-qPCR?
    Lima, Luina Benevides
    Mesquita, Felipe Pantoja
    Brasil de Oliveira, Lais Lacerda
    da Silva Oliveira, Francisca Andrea
    Amaral de Moraes, Maria Elisabete
    Souza, Pedro F. N.
    Montenegro, Raquel Carvalho
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2022, 22 (02) : 157 - 167
  • [7] A Compressed Sensing Approach to Pooled RT-PCR Testing for COVID-19 Detection
    Ghosh, Sabyasachi
    Agarwal, Rishi
    Rehan, Mohammad Ali
    Pathak, Shreya
    Agarwal, Pratyush
    Gupta, Yash
    Consul, Sarthak
    Gupta, Nimay
    Ritika
    Goenka, Ritesh
    Rajwade, Ajit
    Gopalkrishnan, Manoj
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2021, 2 (02): : 248 - 264
  • [8] SARS-CoV-2 detection by RT-qPCR using saliva in outpatients tested for COVID-19
    Cecilia, Perret P.
    Abarca, Katia
    Solari, Sandra
    Aguilera, Pablo
    Garcia-Huidobro, Diego
    Olivares, Felipe
    Palma, Carlos
    Contreras, Ana Maria
    Martinez-Valdebenito, Constanza
    Ferres, Marcela
    REVISTA CHILENA DE INFECTOLOGIA, 2022, 39 (04): : 372 - 381
  • [9] COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2
    Dutta, Debashis
    Naiyer, Sarah
    Mansuri, Sabanaz
    Soni, Neeraj
    Singh, Vandana
    Bhat, Khalid Hussain
    Singh, Nishant
    Arora, Gunjan
    Mansuri, M. Shahid
    DIAGNOSTICS, 2022, 12 (06)
  • [10] Lower cost alternatives for molecular diagnosis of COVID-19: conventional RT-PCR and SYBR Green-based RT-qPCR
    Dorlass, Erick Gustavo
    Monteiro, Cairo Oliveira
    Viana, Amanda Oliveira
    Soares, Camila Pereira
    Guaragna Machado, Rafael Rahal
    Thomazelli, Luciano Matsumiya
    Araujo, Danielle Bastos
    Leal, Fabyano Bruno
    Candido, Erika Donizette
    Telezynski, Bruna Larotonda
    Valerio, Camila Araujo
    Chalup, Vanessa Nascimento
    Mello, Ralyria
    Almeida, Flavia Jaqueline
    Aguiar, Andressa Simoes
    Mott Barrientos, Anna Carlotta
    Sucupira, Carolina
    De Paulis, Milena
    Palazzi Safadi, Marco Aurelio
    Bonfim Prado Silva, Daniella Gregorio
    Martins Sodre, Janaina Joice
    Soledade, Mariana Pereira
    Matos, Samantha Faria
    Ferreira, Sabrina Rodrigues
    Nunez Pinez, Celia Miranda
    Buonafine, Carolina Palamin
    Ferreira Pieroni, Leticia Nery
    Malta, Fernanda Mello
    Ferraz Santana, Rubia Anita
    Souza, Eloisa Correa
    Fock, Ricardo Ambrosio
    Rebelo Pinho, Joao Renato
    Souza Ferreira, Luis Carlos
    Botosso, Viviane Fongaro
    Durigon, Edison Luiz
    Leal Oliveira, Danielle Bruna
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2020, 51 (03) : 1117 - 1123