On the Alexander-Hirschowitz theorem

被引:84
作者
Brambilla, Maria Chiara [2 ]
Ottaviani, Giorgio [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Florence, Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
关键词
D O I
10.1016/j.jpaa.2007.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Alexander-Hirschowitz theorem says that a general collection of k double points in P-n imposes independent conditions on homogeneous polynomials of degree d with a well-known list of exceptions. Alexander and Hirschowitz completed its proof in 1995, solving a long standing classical problem, connected with the Waring problem for polynomials. We expose a self-contained proof based mainly on the previous works by Terracini, Hirschowitz, Alexander and Chandler, with a few simplifications. We claim originality only in the case d = 3, where our proof is shorter. We end with an account of the history of the work on this problem. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1229 / 1251
页数:23
相关论文
共 39 条
[1]  
ABO H, MATHAG0607191
[2]  
ALEXANDER J, 1988, COMPOS MATH, V68, P305
[3]   HORACE METHOD - APPLICATION TO 4TH-DEGREE INTERPOLATION [J].
ALEXANDER, J ;
HIRSCHOWITZ, A .
INVENTIONES MATHEMATICAE, 1992, 107 (03) :585-602
[4]   Generic hypersurface singularities [J].
Alexander, J ;
Hirschowitz, A .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02) :139-154
[5]  
Alexander J., 1992, J. Alg. Geom., V1, P411
[6]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[7]  
BRANNETTI S, 2007, THESIS
[8]  
Bronowski J, 1933, P CAMB PHILOS SOC, V29, P69
[9]  
Campbell J.E., 1891, MESSENGER MATH, V21, P158
[10]   Secant varieties of Grassmann varieties [J].
Catalisano, MV ;
Geramita, AV ;
Gimigliano, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :633-642