LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS

被引:272
作者
Malqvist, Axel [1 ,2 ]
Peterseim, Daniel [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-14296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-14296 Gothenburg, Sweden
[3] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
基金
瑞典研究理事会;
关键词
Finite element method; a priori error estimate; convergence; multiscale method; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
10.1090/S0025-5718-2014-02868-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper constructs a local generalized finite element basis for elliptic problems with heterogeneous and highly varying coefficients. The basis functions are solutions of local problems on vertex patches. The error of the corresponding generalized finite element method decays exponentially with respect to the number of layers of elements in the patches. Hence, on a uniform mesh of size H, patches of diameter H log(1/H) are sufficient to preserve a linear rate of convergence in H without pre-asymptotic or resonance effects. The analysis does not rely on regularity of the solution or scale separation in the coefficient. This result motivates new and justifies old classes of variational multiscale methods.
引用
收藏
页码:2583 / 2603
页数:21
相关论文
共 50 条
  • [21] OPTIMAL CONTROL FOR MULTISCALE ELLIPTIC EQUATIONS WITH ROUGH COEFFICIENTS
    Chen, Yanping
    Liu, Xinliang
    Zeng, Jiaoyan
    Zhang, Lei
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05): : 842 - 866
  • [22] A LOCAL CONSERVATIVE MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH OSCILLATING COEFFICIENTS
    Jeon, Youngmok
    Park, Eun-Jae
    [J]. JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2020, 24 (02) : 215 - 227
  • [23] REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (01) : 316 - 337
  • [24] Robust Numerical Upscaling of Elliptic Multiscale Problems at High Contrast
    Peterseim, Daniel
    Scheichl, Robert
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (04) : 579 - 603
  • [25] Essentially optimal finite elements for multiscale elliptic eigenvalue problems
    Pham Quy Muoi
    Wee Chin Tan
    Viet Ha Hoang
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)
  • [26] A combined multiscale finite element method based on the LOD technique for the multiscale elliptic problems with singularities
    Zhang, Kuokuo
    Deng, Weibing
    Wu, Haijun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 469
  • [27] THE MULTISCALE DISCONTINUOUS GALERKIN METHOD FOR SOLVING A CLASS OF SECOND ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS
    Wang, Wei
    Guzman, Johnny
    Shu, Chi-Wang
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (01) : 28 - 47
  • [28] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    [J]. MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1033 - 1070
  • [29] Multiscale methods for problems with complex geometry
    Elfverson, Daniel
    Larson, Mats G.
    Malqvist, Axel
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 103 - 123
  • [30] Multiscale hybridizable discontinuous Galerkin method for elliptic problems in perforated domains
    Cho, Kanghun
    Moon, Minam
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 365