LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS

被引:271
|
作者
Malqvist, Axel [1 ,2 ]
Peterseim, Daniel [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-14296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-14296 Gothenburg, Sweden
[3] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
基金
瑞典研究理事会;
关键词
Finite element method; a priori error estimate; convergence; multiscale method; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
10.1090/S0025-5718-2014-02868-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper constructs a local generalized finite element basis for elliptic problems with heterogeneous and highly varying coefficients. The basis functions are solutions of local problems on vertex patches. The error of the corresponding generalized finite element method decays exponentially with respect to the number of layers of elements in the patches. Hence, on a uniform mesh of size H, patches of diameter H log(1/H) are sufficient to preserve a linear rate of convergence in H without pre-asymptotic or resonance effects. The analysis does not rely on regularity of the solution or scale separation in the coefficient. This result motivates new and justifies old classes of variational multiscale methods.
引用
收藏
页码:2583 / 2603
页数:21
相关论文
共 50 条
  • [1] SUPER-LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS
    Hauck, Moritz
    Peterseim, Daniel
    MATHEMATICS OF COMPUTATION, 2023, 92 (341) : 981 - 1003
  • [2] MULTISCALE METHODS FOR ELLIPTIC PROBLEMS
    Malqvist, Axel
    MULTISCALE MODELING & SIMULATION, 2011, 9 (03): : 1064 - 1086
  • [3] Multiscale methods for elliptic homogenization problems
    Chen, ZX
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (02) : 317 - 360
  • [4] Numerical method for elliptic multiscale problems
    Greff, I.
    Hackbusch, W.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (02) : 119 - 138
  • [5] Numerical methods for multiscale elliptic problems
    Ming, PB
    Yue, XY
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (01) : 421 - 445
  • [6] Comparison of Four Multiscale Methods for Elliptic Problems
    Wu, Y. T.
    Nie, Y. F.
    Yang, Z. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 99 (04): : 297 - 325
  • [7] A framework for adaptive multiscale methods for elliptic problems
    Nolen, James
    Papanicolaou, George
    Pironneau, Olivier
    MULTISCALE MODELING & SIMULATION, 2008, 7 (01): : 171 - 196
  • [8] Multiscale discontinuous Petrov-Galerkin method for the multiscale elliptic problems
    Song, Fei
    Deng, Weibing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (01) : 184 - 210
  • [9] CONTRAST INDEPENDENT LOCALIZATION OF MULTISCALE PROBLEMS
    Hellman, Fredrik
    Malqvist, Axel
    MULTISCALE MODELING & SIMULATION, 2017, 15 (04): : 1325 - 1355
  • [10] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457