Transfer Learning and Data Augmentation Techniques to the COVID-19 Identification Tasks in ComParE 2021

被引:9
作者
Casanova, Edresson [1 ]
Candido Jr, Arnaldo [2 ]
Fernandes Jr, Ricardo Corso [2 ]
Finger, Marcelo [3 ]
Stefanel Gris, Lucas Rafael [2 ]
Ponti, Moacir A. [1 ]
Pinto da Silva, Daniel Peixoto [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo, Brazil
[2] Univ Tecnol Fed Parana, Curitiba, Parana, Brazil
[3] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, Brazil
来源
INTERSPEECH 2021 | 2021年
基金
巴西圣保罗研究基金会;
关键词
computational paralinguistics; COVID-19; deep learning; data augmentation; transfer learning;
D O I
10.21437/Interspeech.2021-1798
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
In this work, we propose several techniques to address data scarceness in ComParE 2021 COVID-19 identification tasks for the application of deep models such as Convolutional Neural Networks. Data is initially preprocessed into spectrogram or MFCC-gram formats. After preprocessing, we combine three different data augmentation techniques to be applied in model training. Then we employ transfer learning techniques from pretrained audio neural networks. Those techniques are applied to several distinct neural architectures. For COVID-19 identification in speech segments, we obtained competitive results. On the other hand, in the identification task based on cough data, we succeeded in producing a noticeable improvement on existing baselines, reaching 75.9% unweighted average recall (UAR).
引用
收藏
页码:446 / 450
页数:5
相关论文
共 34 条
[1]  
Baevski A., 2020, arXiv
[3]   Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data [J].
Brown, Chloe ;
Chauhan, Jagmohan ;
Grammenos, Andreas ;
Han, Jing ;
Hasthanasombat, Apinan ;
Spathis, Dimitris ;
Xia, Tong ;
Cicuta, Pietro ;
Mascolo, Cecilia .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3474-3484
[4]  
Casanova E., 2021, FINDINGS ASS COMPUTA
[5]  
Chambres G, 2018, INT WORK CONTENT MUL
[6]  
Devlin Jacob, 2018, P C N AM CHAPT ASS C
[7]   Learning image features with fewer labels using a semi-supervised deep convolutional network [J].
dos Santos, Fernando P. ;
Zor, Cemre ;
Kittler, Josef ;
Ponti, Moacir A. .
NEURAL NETWORKS, 2020, 132 :131-143
[8]   Generalization of feature embeddings transferred from different video anomaly detection domains [J].
dos Santos, Fernando P. ;
Ribeiro, Leonardo S. F. ;
Ponti, Moacir A. .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 :407-416
[9]  
Emara Taha, 2019, 2019 14th International Conference on Computer Engineering and Systems (ICCES). Proceedings, P28, DOI 10.1109/ICCES48960.2019.9068110
[10]  
Gemmeke JF, 2017, INT CONF ACOUST SPEE, P776, DOI 10.1109/ICASSP.2017.7952261