A CONJUGATE GRADIENT METHOD FOR ELECTRONIC STRUCTURE CALCULATIONS

被引:13
作者
Dai, Xiaoying [1 ,2 ]
Liu, Zhuang [1 ,2 ]
Zhang, Liwei [1 ,2 ]
Zhou, Aihui [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
conjugate gradient method; density functional theory; electronic structure; optimization; DENSITY-FUNCTIONAL THEORY; CONSISTENT-FIELD ITERATION; ORTHOGONALITY CONSTRAINTS; OPTIMIZATION; MINIMIZATION; CONVERGENCE; GEOMETRY; EQUATION; SYSTEMS;
D O I
10.1137/16M1072929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a conjugate gradient method for electronic structure calculations. We propose a Hessian based step size strategy, which together with three orthogonality approaches yields three algorithms for computing the ground state energy of atomic and molecular systems. Under some mild assumptions, we prove that our algorithms converge locally. It is shown by our numerical experiments that the conjugate gradient method is efficient.
引用
收藏
页码:A2702 / A2740
页数:39
相关论文
共 42 条
[21]  
Martin R.M., 2020, Electronic Structure: Basic Theory and Practical Methods
[22]  
Parr RG, 1994, Density-functional theory of atoms and molecules international series of monographs on chemistry
[23]   ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGATE GRADIENTS [J].
PAYNE, MC ;
TETER, MP ;
ALLAN, DC ;
ARIAS, TA ;
JOANNOPOULOS, JD .
REVIEWS OF MODERN PHYSICS, 1992, 64 (04) :1045-1097
[24]   SELF-INTERACTION CORRECTION TO DENSITY-FUNCTIONAL APPROXIMATIONS FOR MANY-ELECTRON SYSTEMS [J].
PERDEW, JP ;
ZUNGER, A .
PHYSICAL REVIEW B, 1981, 23 (10) :5048-5079
[25]   RESTART PROCEDURES FOR CONJUGATE GRADIENT METHOD [J].
POWELL, MJD .
MATHEMATICAL PROGRAMMING, 1977, 12 (02) :241-254
[26]   Numerical Methods for Electronic Structure Calculations of Materials [J].
Saad, Yousef ;
Chelikowsky, James R. ;
Shontz, Suzanne M. .
SIAM REVIEW, 2010, 52 (01) :3-54
[27]  
Schneider R, 2009, J COMPUT MATH, V27, P360
[28]   A majorization algorithm for constrained correlation matrix approximation [J].
Simon, Dan ;
Abell, Jeff .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (05) :1152-1164
[29]  
Smith, 1993, GEOMETRIC OPTIMIZATI
[30]  
Smith S. T., 1994, Fields Institute Communications, V3, P113