Stability of SU(Nc) QCD3 from the ε-expansion

被引:3
作者
Goldman, Hart [1 ,2 ]
Mulligan, Michael [2 ,3 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[3] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92511 USA
基金
美国国家科学基金会;
关键词
SYMMETRY-BREAKING; CRITICAL-BEHAVIOR; GAUGE-THEORIES;
D O I
10.1103/PhysRevD.94.065031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
QCD with gauge group SU(N-c) flows to an interacting conformal fixed point in three spacetime dimensions when the number of four-component Dirac fermions N-f >> N-c. We study the perturbative stability of this fixed point via the.-expansion about four dimensions. We find that when the number of fermions is lowered to N-f(crit) approximate to 11/2 N-c + (6 + 4/N-c)epsilon, a certain four-fermion operator becomes relevant and the theory flows to a new infrared fixed point that may be either massless or massive. F-theorem or entanglement monotonicity considerations complement our epsilon-expansion calculation.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
[Anonymous], ARXIV13091160
[2]  
[Anonymous], ARXIV160207982
[3]   HIGH-TEMPERATURE YANG-MILLS THEORIES AND 3-DIMENSIONAL QUANTUM CHROMODYNAMICS [J].
APPELQUIST, T ;
PISARSKI, RD .
PHYSICAL REVIEW D, 1981, 23 (10) :2305-2317
[4]   CRITICAL-BEHAVIOR IN (2+1)-DIMENSIONAL QCD [J].
APPELQUIST, T ;
NASH, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (07) :721-724
[5]   CRITICAL-BEHAVIOR IN (2+1)-DIMENSIONAL QED [J].
APPELQUIST, T ;
NASH, D ;
WIJEWARDHANA, LCR .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2575-2578
[6]   REDUCED EFFECTIVE LAGRANGIANS [J].
ARZT, C .
PHYSICS LETTERS B, 1995, 342 (1-4) :189-195
[7]   ON THE PHASE-STRUCTURE OF VECTOR-LIKE GAUGE-THEORIES WITH MASSLESS FERMIONS [J].
BANKS, T ;
ZAKS, A .
NUCLEAR PHYSICS B, 1982, 196 (02) :189-204
[8]   Phase structure of many-flavor QED3 [J].
Braun, Jens ;
Gies, Holger ;
Janssen, Lukas ;
Roscher, Dietrich .
PHYSICAL REVIEW D, 2014, 90 (03)
[9]   Renormalization group running of the entanglement entropy of a circle [J].
Casini, H. ;
Huerta, M. .
PHYSICAL REVIEW D, 2012, 85 (12)
[10]   Towards a derivation of holographic entanglement entropy [J].
Casini, Horacio ;
Huerta, Marina ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05)