On ev and ve-Degree Based Topological Indices of Silicon Carbides

被引:18
|
作者
Lee, Jung Rye [1 ]
Hussain, Aftab [2 ]
Fahad, Asfand [3 ]
Raza, Ali [3 ]
Qureshi, Muhammad Imran [3 ]
Mahboob, Abid [4 ]
Park, Choonkil [5 ]
机构
[1] Daejin Univ, Dept Data Sci, Kyunggi 11159, South Korea
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Vehari 61110, Pakistan
[4] Univ Educ, Dept Math, Div Sci & Technol, Lahore, Pakistan
[5] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2022年 / 130卷 / 02期
关键词
Topological indices; silicon carbide; ev-degree; ve-degree; DESCRIPTORS;
D O I
10.32604/cmes.2022.016836
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies, computation of topological indices is a vital tool to predict biochemical and physio-chemical properties of chemical structures. Numerous topological indices have been inaugurated to describe different topological features. The ev and ve-degree are recently introduced novelties, having stronger prediction ability. In this article, we derive formulae of the ev-degree and ve-degree based topological indices for chemical structure of Si2C3 - I[a,b].
引用
收藏
页码:871 / 885
页数:15
相关论文
共 50 条
  • [21] Some new degree based topological indices via M-polynomial
    Afzal, Farkhanda
    Hussain, Sabir
    Afzal, Deeba
    Razaq, Sidra
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (04) : 1061 - 1076
  • [22] Degree based topological indices of tadpole graph via M-polynomial
    Chaudhry, Faryal
    Ehsan, Muhammad
    Afzal, Farkhanda
    Farahani, Mohammad Reza
    Cancan, Murat
    Ciftci, Idris
    EURASIAN CHEMICAL COMMUNICATIONS, 2021, 3 (03): : 146 - 153
  • [23] On multiplicative degree based topological indices for planar octahedron networks
    Dustigeer, Ghulam
    Ali, Haidar
    Khan, Muhammad Imran
    Chu, Yu-Ming
    MAIN GROUP METAL CHEMISTRY, 2020, 43 (01) : 219 - 228
  • [24] On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model
    Imran, Muhammad
    Siddiqui, Muhammad Kamran
    Ahmad, Ali
    Ali, Usman
    Hanif, Nazia
    AXIOMS, 2018, 7 (04):
  • [25] Some Degree-Based Topological Indices of Hexagonal Cacti
    Tabassum, Hafsah
    Jiarasuksakun, Thiradet
    Samphavat, Suchat
    Kaemawichanurat, Pawaton
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 585 - 608
  • [26] On structure-sensitivity of degree-based topological indices
    Furtula, Boris
    Gutman, Ivan
    Dehmer, Matthias
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 8973 - 8978
  • [27] COMPUTING VE TOPOLOGICAL INDICES OF TICKYSIM SPINNAKER MODEL
    Iqbal, H.
    Ali, K.
    Rizvi, S. T. R.
    Wajid, H. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 1158 - 1168
  • [28] On Degree Based Topological Co-Indices of Graphite Carbon Nitride
    Huang, Rongbing
    Muhammad, Mehwish Hussain
    Siddiqui, Muhammad Kamran
    Nasir, Muhammad
    Cancan, Murat
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (08) : 5616 - 5625
  • [29] A Study on Degree Based Topological Indices of Harary Subdivision Graphs With Application
    Ahmad, Mukhtar
    Qayyum, Ather
    Atta, Gulnaz
    Supadi, Siti Suzlin
    Saleem, Muhammad
    Ali, Usman
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [30] A Consequential Computation of Degree Based Topological Indices of Grasmere Geometric Graph
    Mufti, Zeeshan Saleem
    Wajid, Asma
    Ul Islam, Tanweer
    Ali, Nasir
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (08): : 45 - 60