INTEGRAL REPRESENTATIONS FOR BRACKET-GENERATING MULTI-FLOWS

被引:10
作者
Feleqi, Ermal [1 ]
Rampazzo, Franco [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, PD, Italy
关键词
Iterated Lie brackets; multi-flows; integral formulas; low smoothness hypotheses; asymptotic formulas; Chow's theorem; REGULAR VECTOR-FIELDS; THEOREM; MAPS;
D O I
10.3934/dcds.2015.35.4345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If f(1), f2 are smooth vector fields on an open subset of an Euclidean space and [f(1), f(2)] is their Lie bracket, the asymptotic formula Psi([f1,f2]) (t(1), t(2))(x)-x = t(1)t(2) [f(1), f(2)](x)+ o(t(1)t(2)), where we have set Psi[f(1),f(2)] (t(1,)t(2))(x) -(def) exp(-t(2)f(2)) o exp(-t(1)f(1)) o exp(t(2)f(2)) o exp(t(1)f(1))(x), is valid for all t(1), t(2) small enough. In fact, the integral, exact formula Psi([f1,f2]) (t(1), t(2))(x)-x =integral(t1)(0)integral(t2)(0) [f(1),f(2])((s2,s1))(Psi(t(1),s(2))(x))ds(1) ds(2), where [f(1), f(2)]((s2,s1))(y)=(def) D (exp(s(1)f(1))o exp(s(2)f(2))))(-1)(y).[f(1), f(2)](exp(s(1)f(1)) o exp(s(2)f(2))(y)), has also been proven. Of course (2) can be regarded as an improvement of (1). In this paper we show that an integral representation like (2) holds true for any iterated Lie bracket made of elements of a family f(1),...., f(m) of vector fields. In perspective, these integral representations might lie at the basis for extensions of asymptotic formulas involving non-smooth vector fields.
引用
收藏
页码:4345 / 4366
页数:22
相关论文
共 12 条