Counting bordered and primitive words with a fixed weight

被引:6
作者
Harju, T [1 ]
Nowotka, D
机构
[1] Univ Turku, Turku Ctr Comp Sci, Dept Math, FIN-20014 Turku, Finland
[2] Univ Stuttgart, Inst Formal Methods Comp Sci, D-70569 Stuttgart, Germany
关键词
combinatorics on words; borders; primitive words; Mobius function;
D O I
10.1016/j.tcs.2005.03.040
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A word w is primitive if it is not a proper power of another word, and w is unbordered if it has no prefix that is also a suffix of w. We study the number of primitive and unbordered words w with a fixed weight, that is, words for which the Parikh vector of w is a fixed vector. Moreover, we estimate the number of words that have a unique border. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 7 条
[1]  
HARBORTH H, 1974, J REINE ANGEW MATH, V271, P139
[2]  
LOTHAIRE M, 1983, COMBINATORIES WORDS, V17
[3]   BIFIX-FREE SEQUENCES [J].
NIELSEN, PT .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (05) :704-706
[4]   On the language of primitive words [J].
Petersen, H .
THEORETICAL COMPUTER SCIENCE, 1996, 161 (1-2) :141-156
[5]   ENUMERATION OF BORDERED WORDS - LE-LANGAGE-DE-LA-VACHE-QUI-RIT [J].
REGNIER, M .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1992, 26 (04) :303-317
[6]  
SIMON I, 1994, LECT NOTES COMPUTER, V812, P386
[7]  
SLOANE NJA, LINE ENCY INTEGR SEQ