MONOPOLES IN THE PLAQUETTE FORMULATION OF THE 3D SU(2) LATTICE GAUGE THEORY

被引:0
作者
Borisenko, O. [1 ]
Voloshyn, S. [1 ]
Bohacik, J. [2 ]
机构
[1] Natl Acad Sci Ukraine, NN Bogoliubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[2] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
关键词
Lattice gauge theory; plaquette representation; monopoles; confinement mechanism; FIELD-STRENGTH FORMULATION; CONFINEMENT;
D O I
10.1142/S0217732311036267
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a plaquette formulation for lattice gauge models we describe monopoles of the three-dimensional SU(2) theory which appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthermore, we derive a dual formulation for the Wilson loop in arbitrary representation and calculate the form of the interaction between generated electric flux and monopoles in the region of a weak coupling relevant for the continuum limit. The effective theory which controls the interaction is of the sine-Cordon type model. The string tension is calculated within the semiclassical approximation.
引用
收藏
页码:1853 / 1867
页数:15
相关论文
共 14 条
[1]  
Ambjorn J, 1998, J HIGH ENERGY PHYS
[2]  
[Anonymous], 1987, CONT CONCEPTS PHYS
[3]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[4]  
BATROUNI GG, 1982, NUCL PHYS B, V208, P467, DOI 10.1016/0550-3213(82)90231-0
[5]   Field strength formulation, lattice Bianchi identities and perturbation theory for non-Abelian models [J].
Borisenko, O. ;
Voloshin, S. ;
Faber, M. .
NUCLEAR PHYSICS B, 2009, 816 (03) :399-426
[6]   Low-temperature expansion and perturbation theory in 2D models with unbroken symmetry: A new approach [J].
Borisenko, O ;
Kushnir, V ;
Velytsky, A .
PHYSICAL REVIEW D, 2000, 62 (02) :1-11
[7]  
BORISENKO O, 2002, P NATO WORKSH CONF T, P33
[8]  
CONRADY F, ARXIVHEPTH0610238
[9]   QCD MONOPOLES ON THE LATTICE AND GAUGE INVARIANCE [J].
Di Giacomo, Adriano .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 207-08 :337-340
[10]  
GOPFERT M, 1982, COMMUN MATH PHYS, V82, P545, DOI 10.1007/BF01961240