TSTELM: Two-Stage Transfer Extreme Learning Machine for Unsupervised Domain Adaptation

被引:6
|
作者
Zang, Shaofei [1 ]
Li, Xinghai [1 ]
Ma, Jianwei [1 ]
Yan, Yongyi [1 ]
Gao, Jiwei [1 ]
Wei, Yuan [2 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang 471000, Peoples R China
[2] Henan Univ Sci & Technol, Coll Vehicle & Traff Engn, Luoyang 471000, Peoples R China
基金
中国国家自然科学基金;
关键词
BAYESIAN CLASSIFICATION; SWARM OPTIMIZATION; KERNEL; MODEL;
D O I
10.1155/2022/1582624
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a single-layer feedforward network (SLFN), extreme learning machine (ELM) has been successfully applied for classification and regression in machine learning due to its faster training speed and better generalization. However, it will perform poorly for domain adaptation in which the distributions between training data and testing data are inconsistent. In this article, we propose a novel ELM called two-stage transfer extreme learning machine (TSTELM) to solve this problem. At the statistical matching stage, we adopt maximum mean discrepancy (MMD) to narrow the distribution difference of the output layer between domains. In addition, at the subspace alignment stage, we align the source and target model parameters, design target cross-domain mean approximation, and add the output weight approximation to further promote the knowledge transferring across domains. Moreover, the prediction of test sample is jointly determined by the ELM parameters generated at the two stages. Finally, we investigate the proposed approach in classification task and conduct experiments on four public domain adaptation datasets. The result indicates that TSTELM could effectively enhance the knowledge transfer ability of ELM with higher accuracy than other existing transfer and non-transfer classifiers.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Domain Space Transfer Extreme Learning Machine for Domain Adaptation
    Chen, Yiming
    Song, Shiji
    Li, Shuang
    Yang, Le
    Wu, Cheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (05) : 1909 - 1922
  • [2] Discriminative Extreme Learning Machine with Cross-Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Li, Xinghai
    Ma, Jianwei
    Yan, Yongyi
    Lv, Jinfeng
    Wei, Yuan
    COMPLEXITY, 2022, 2022
  • [3] Transfer metric learning for unsupervised domain adaptation
    Huang, Junchu
    Zhou, Zhiheng
    IET IMAGE PROCESSING, 2019, 13 (05) : 804 - 810
  • [4] Nonconvex and discriminative transfer subspace learning for unsupervised domain adaptation
    Liu, Yueying
    Luo, Tingjin
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (02)
  • [5] Robust Visual Knowledge Transfer via Extreme Learning Machine-Based Domain Adaptation
    Zhang, Lei
    Zhang, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4959 - 4973
  • [6] Transfer Domain Class Clustering for Unsupervised Domain Adaptation
    Fan, Yunxin
    Yan, Gang
    Li, Shuang
    Song, Shiji
    Wang, Wei
    Peng, Xinping
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT) 2017: ELECTRICAL TRACTION, 2018, 482 : 827 - 835
  • [7] Cross-Domain Extreme Learning Machines for Domain Adaptation
    Li, Shuang
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1194 - 1207
  • [8] Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation
    Noori Saray, Shiva
    Tahmoresnezhad, Jafar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (02) : 279 - 287
  • [9] Unsupervised domain adaptation via feature transfer learning based on elastic embedding
    Yang, Liran
    Lu, Bin
    Zhou, Qinghua
    Su, Pan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3081 - 3094
  • [10] Guide Subspace Learning for Unsupervised Domain Adaptation
    Zhang, Lei
    Fu, Jingru
    Wang, Shanshan
    Zhang, David
    Dong, Zhaoyang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3374 - 3388