Classification of Simple Weight Modules Over the 1-Spatial Ageing Algebra

被引:18
作者
Lu, Rencai [1 ]
Mazorchuk, Volodymyr [2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Soochow Univ, Dept Math, Suzhou, Peoples R China
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Weight module; Schrodinger algebra; Ageing algebra; Highest weight module; LOCAL SCALE-INVARIANCE; SCHRODINGER INVARIANCE; REPRESENTATIONS; SL(2);
D O I
10.1007/s10468-014-9499-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use Block's classification of simple modules over the first Weyl algebra to obtain a complete classification of simple weight modules, in particular, of Harish-Chandra modules, over the 1-spatial ageing algebra . Most of these modules have infinite dimensional weight spaces and so far the algebra is the only Lie algebra having simple weight modules with infinite dimensional weight spaces for which such a classification exists. As an application we classify all simple weight modules over the (1+1)-dimensional space-time Schrodinger algebra that have a simple -submodule thus constructing many new simple weight S-modules.
引用
收藏
页码:381 / 395
页数:15
相关论文
共 30 条
[1]  
7Dixmier J., 1996, Grad. Stud. Math., V11
[2]   HIGHEST WEIGHT REPRESENTATIONS AND KAC DETERMINANTS FOR A CLASS OF CONFORMAL GALILEI ALGEBRAS WITH CENTRAL EXTENSION [J].
Aizawa, Naruhiko ;
Isaac, Phillip S. ;
Kimura, Yuta .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (11)
[3]   On irreducible representations of the exotic conformal Galilei algebra [J].
Aizawa, Naruhiko ;
Isaac, Phillip S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
[5]   GROWTH LAWS FOR PHASE ORDERING [J].
BRAY, AJ ;
RUTENBERG, AD .
PHYSICAL REVIEW E, 1994, 49 (01) :R27-R30
[6]  
Bueso JL, 1998, LECT NOTES PURE APPL, V197, P55
[7]   The classification of uniserial sl(2) (sic) V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol [J].
Cagliero, Leandro ;
Szechtman, Fernando .
JOURNAL OF ALGEBRA, 2013, 386 :142-175
[8]   A q-Schrodinger algebra, its lowest-weight representations and generalized q-deformed heat/Schrodinger equations [J].
Dobrev, VK ;
Doebner, HD ;
Mrugalla, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18) :5909-5918
[9]   Category O for the Schrodinger algebra [J].
Dubsky, Brendan ;
Lu, Rencai ;
Mazorchuk, Volodymyr ;
Zhao, Kaiming .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 460 :17-50
[10]   Classification of simple weight modules with finite-dimensional weight spaces over the Schrodinger algebra [J].
Dubsky, Brendan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 :204-214