Bifurcation analysis and circuit implementation of a simple chaos generator

被引:0
作者
Zhong, GQ [1 ]
Tang, KS [1 ]
Chen, GR [1 ]
Man, KF [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
bifurcation; chaos generator; anti-control; circuit implementation;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
ia nonlinear controller is proposed for chaos generation in an arbitrarily given lower-order linear autonomous system. The only nonlinearity in the controller is a piecewise quadratic function. of the form g(v) = v/v/. A general two-dimensional linear autonomous system is used for illustration. Bifurcation analysis and chaos verification sire given by numerical continuation techniques and the Shil'nikov theorem. Both computer simulation and circuit implementation demonstrate the chaotic dynamics generated by this simple anti-controller.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1998, CHAOS ENG THEORY APP
[2]  
[Anonymous], 1998, AUTO 97 CONTINUATION
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]  
Chen G., 1999, CONTROLLING CHAOS BI
[5]   Feedback anticontrol of discrete chaos [J].
Chen, GR ;
Lai, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1585-1590
[6]   ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA'S CIRCUIT WITH A SMOOTH NONLINEARITY [J].
Khibnik, Alexander I. ;
Roose, Dirk ;
Chua, Leon O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :363-384
[7]  
Kunin I, 2000, CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, P229, DOI 10.1109/COC.2000.873959
[8]  
Pogromsky A. Yu, 1999, INTRO CONTROL OSCILL
[9]  
TANG KS, 2001, IEEE T CIRCUITS SYST, V1
[10]  
Vaneek A., 1996, CONTROL SYSTEMS LINE