Detection of dynamical systems from noisy multivariate time series

被引:0
|
作者
Asai, Yoshiyuki [1 ]
Villa, Alessandro E. P. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Tsukuba, Ibaraki, Japan
来源
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V | 2008年 / 59卷
关键词
multivariate time series; pattern detection algorithm; dynamical systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Experimental observations of physical, social, or economical systems may often be reduced to multivariate time series. The observed time series may be investigated as random processes or realizations of stochastic dynamical systems. Studies of natural phenomena should consider that the time series are affected by a random noise such that some realizations of the underlying dynamical system are missed by the observer and some observations correspond to the realizations of a stochastic process associated to the method of measurement. Within this framework we consider discrete time series derived from mappings by the iterations of one observable, typically one of the system's coordinates. The time series were altered by several levels of noise and we show that a pattern detection algorithm was able to detect temporal patterns of events that repeated more frequently than expected by chance. These patterns were related to the generating attractors and were robust with respect to the appearance of spurious points due to the noise. On the basis of this result we propose a filtering procedure aimed at decreasing the amount of noisy events in time series.
引用
收藏
页码:3 / +
页数:4
相关论文
共 50 条
  • [1] Self-Consistent Learning of Neural Dynamical Systems From Noisy Time Series
    Wang, Zhe
    Guet, Claude
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1103 - 1112
  • [2] Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer
    Ye, Yufeng
    He, Qichao
    Zhang, Peng
    Xiao, Jie
    Li, Zhao
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 381 - 388
  • [3] Unsupervised feature extraction from multivariate time series for outlier detection
    Matsue, Kiyotaka
    Sugiyama, Mahito
    INTELLIGENT DATA ANALYSIS, 2022, 26 (06) : 1451 - 1467
  • [4] Dynamics from multivariate time series
    Cao, LY
    Mees, A
    Judd, K
    PHYSICA D, 1998, 121 (1-2): : 75 - 88
  • [5] From anomaly detection to classification with graph attention and transformer for multivariate time series
    Wang, Chaoyang
    Liu, Guangyu
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [6] Sequential detection of a temporary change in multivariate time series
    Watson, Victor
    Septier, Francois
    Armand, Patrick
    Duchenne, Christophe
    DIGITAL SIGNAL PROCESSING, 2022, 127
  • [7] Unsupervised Anomaly Detection Approach for Multivariate Time Series
    Zhou, Yuanlin
    Song, Yingxuan
    Qian, Mideng
    2021 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C 2021), 2021, : 229 - 235
  • [8] USAD : UnSupervised Anomaly Detection on Multivariate Time Series
    Audibert, Julien
    Michiardi, Pietro
    Guyard, Frederic
    Marti, Sebastien
    Zuluaga, Maria A.
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3395 - 3404
  • [9] Contrastive autoencoder for anomaly detection in multivariate time series
    Zhou, Hao
    Yu, Ke
    Zhang, Xuan
    Wu, Guanlin
    Yazidi, Anis
    INFORMATION SCIENCES, 2022, 610 : 266 - 280
  • [10] Outlier detection in multivariate time series by projection pursuit
    Galeano, Pedro
    Pena, Daniel
    Tsay, Ruey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 654 - 669