Cardiovascular Disorder Severity Detection Using Myocardial Anatomic Features Based Optimized Extreme Learning Machine Approach

被引:7
作者
Muthulakshmi, M. [1 ]
Kavitha, G. [1 ]
机构
[1] Anna Univ, Dept Elect Engn, MIT Campus, Chennai 600044, Tamil Nadu, India
关键词
Cardiovascular disorder; Magnetic resonance images; Myocardium; Extreme learning machine; Butterfly optimization; VENTRICULAR EJECTION FRACTION; SEGMENTATION; HEART; INDEXES; QUANTIFICATION;
D O I
10.1016/j.irbm.2020.06.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objectives: This study focuses on integration of anatomical left ventricle myocardium features and optimized extreme learning machine (ELM) for discrimination of subjects with normal, mild, moderate and severe abnormal ejection fraction (EF). The physiological alterations in myocardium have diagnostic relevance to the etiology of cardiovascular diseases (CVD) with reduced EF. Materials and Methods: This assessment is carried out on cardiovascular magnetic resonance (CMR) images of 104 subjects available in Kaggle Second Annual Data Science Bowl. The Segment CMR framework is used to segment myocardium from cardiac MR images, and it is subdivided into 16 sectors. 86 clinically significant anatomical features are extracted and subjected to ELM framework. Regularization coefficient and hidden neurons influence the prediction accuracy of ELM. The optimal value for these parameters is achieved with the butterfly optimizer (BO). A comparative study of BOELM framework with different activation functions and feature set has been conducted. Results: Among the individual feature set, myocardial volume at ED gives a better classification accuracy of 83.3% compared to others. Further, the given BOELM framework is able to provide higher multi-class accuracy of 95.2% with the entire feature set than ELM. Better discrimination of healthy and moderate abnormal subjects is achieved than other sub groups. Conclusion: The combined anatomical sector wise myocardial features assisted BOELM is able to predict the severity levels of CVDs. Thus, this study supports the radiologists in the mass diagnosis of cardiac disorder. (C) 2020 AGBM. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 34 条
[1]  
[Anonymous], 2012, Prediction as a Candidate for Learning Deep Hierarchical Models of Data
[2]   Butterfly optimization algorithm: a novel approach for global optimization [J].
Arora, Sankalap ;
Singh, Satvir .
SOFT COMPUTING, 2019, 23 (03) :715-734
[3]   Analysis of Regional Deformation of the Heart Left Ventricle [J].
Ayari, R. ;
Ben Abdallah, A. ;
Ghorbel, F. ;
Bedoui, M. H. .
IRBM, 2017, 38 (02) :90-97
[4]   Fusion of Extreme Learning Machine and Graph-Based Optimization Methods for Active Classification of Remote Sensing Images [J].
Bencherif, Mohamed A. ;
Bazi, Yakoub ;
Guessoum, Abderrezak ;
Alajlan, Naif ;
Melgani, Farid ;
AlHichri, Haikel .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :527-531
[5]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[6]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[7]  
Cetin I, 2012, STAT ATLASES COMPUTA, P82
[8]   Features of the Left Ventricular Functional Geometry in Patients with Myocardial Diseases with Varying Degrees of Systolic Dysfunction [J].
Chumarnaya, T. V. ;
Alueva, Yu. S. ;
Kochmasheva, V. V. ;
Mihailov, S. P. ;
Revishvili, A. Sh. ;
Tsyv'ian, P. B. ;
Solov'eva, O. E. .
BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2016, 162 (01) :30-34
[9]   Determining heart parameters through left ventricular automatic segmentation for heart disease diagnosis [J].
Fernandez-Caballero, Antonio ;
Vega-Riesco, Jose M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) :2234-2249
[10]   Design and validation of Segment - freely available software for cardiovascular image analysis [J].
Heiberg E. ;
Sjögren J. ;
Ugander M. ;
Carlsson M. ;
Engblom H. ;
Arheden H. .
BMC Medical Imaging, 10 (1)