Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework

被引:189
作者
Machnes, S. [1 ,2 ]
Sander, U. [3 ]
Glaser, S. J. [3 ]
de Fouquieres, P. [4 ]
Gruslys, A. [4 ]
Schirmer, S. [4 ]
Schulte-Herbrueggen, T. [3 ]
机构
[1] Tel Aviv Univ, Dept Phys, Quantum Grp, IL-69978 Tel Aviv, Israel
[2] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[3] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
QUASI-NEWTON MATRICES; PARAMETER-DIFFERENTIATION; STATE TRANSFER; DYNAMICS; CONTROLLABILITY; EFFICIENT; PERFECT; SYSTEMS; COMPUTE; PHYSICS;
D O I
10.1103/PhysRevA.84.022305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions are pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient MATLAB-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.
引用
收藏
页数:23
相关论文
共 96 条
[81]   The HLRB Cluster as Quantum CISC Compiler Matrix Methods and Applications for Advanced Quantum Control by Gradient-Flow Algorithms on Parallel Clusters [J].
Schulte-Herbrueggen, T. ;
Spoerl, A. ;
Waldherr, K. ;
Gradl, T. ;
Glaser, S. J. ;
Huckle, T. .
HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCH/MUNICH 2007, 2009, :517-+
[82]   Optimal control-based efficient synthesis of building blocks of quantum algorithms:: A perspective from network complexity towards time complexity -: art. no. 042331 [J].
Schulte-Herbrüggen, T ;
Spörl, A ;
Khaneja, N ;
Glaser, SJ .
PHYSICAL REVIEW A, 2005, 72 (04)
[83]  
Schulte-Herbruggen T., 1998, THESIS ETH ZURICH
[84]   Colloquium: Trapped ions as quantum bits: Essential numerical tools [J].
Singer, Kilian ;
Poschinger, Ulrich ;
Murphy, Michael ;
Ivanov, Peter ;
Ziesel, Frank ;
Calarco, Tommaso ;
Schmidt-Kaler, Ferdinand .
REVIEWS OF MODERN PHYSICS, 2010, 82 (03) :2609-2632
[85]   Quantum computation via local control theory: Direct sum vs. direct product Hilbert spaces [J].
Sklarz, SE ;
Tannor, DJ .
CHEMICAL PHYSICS, 2006, 322 (1-2) :87-97
[86]   Optimal control of coupled Josephson qubits [J].
Spoerl, A. ;
Schulte-Herbrueggen, T. ;
Glaser, S. J. ;
Bergholm, V. ;
Storcz, M. J. ;
Ferber, J. ;
Wilhelm, F. K. .
PHYSICAL REVIEW A, 2007, 75 (01)
[87]   CONTROLLABILITY OF NONLINEAR-SYSTEMS [J].
SUSSMANN, HJ ;
JURDJEVIC, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :95-+
[88]   CONTROL OF SELECTIVITY OF CHEMICAL-REACTION VIA CONTROL OF WAVE PACKET EVOLUTION [J].
TANNOR, DJ ;
RICE, SA .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (10) :5013-5018
[89]   Error-resistant single-qubit gates with trapped ions [J].
Timoney, N. ;
Elman, V. ;
Glaser, S. ;
Weiss, C. ;
Johanning, M. ;
Neuhauser, W. ;
Wunderlich, Chr. .
PHYSICAL REVIEW A, 2008, 77 (05)
[90]  
Waldherr K., 2007, THESIS TU MUNICH