Additive manufacturing of conductive and high-strength epoxy-nanoclay-carbon nanotube composites

被引:28
作者
Kasraie, Masoud [1 ]
Abadi, Parisa Pour Shahid Saeed [1 ,2 ,3 ,4 ]
机构
[1] Michigan Technol Univ, Mat Sci & Engn, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Biomed Engn, Houghton, MI 49931 USA
[4] Michigan Technol Univ, Hlth Res Inst, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
Additive manufacturing (AM); Direct-write (DW) printing; 3D printing; Carbon nanotube-epoxy composite; Conductive ink; Nanocomposite; ELECTRICAL-PROPERTIES; NANOCOMPOSITES; ENHANCEMENT; MATRIX;
D O I
10.1016/j.addma.2021.102098
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive Manufacturing has increased our ability to fabricate complex shapes and multi-material structures. Epoxy is excellent as the base for structural composite materials. Furthermore, carbon nanotube (CNT) is an outstanding filler due to its unique properties and functionalities. Here, conductive epoxy-nanoclay-CNT nano composite structures were fabricated by direct-write 3D printing. In this process, 3D-printable composite inks were synthesized by incorporation of nanoclay and different concentrations of CNTs - 0.25, 0.5, and 1 vol%, 0.43, 0.86, and 1.7 wt% - in epoxy. CNTs were found to significantly improve the electrical and mechanical properties. Rheological characterization of the inks revealed a shear-thinning behavior for all the nanocomposite inks and an increase in the complex viscosity, storage, and loss moduli with the incorporation of CNTs. The CNT concentration of 0.5 vol% was found to be the optimum condition for enhancement of mechanical properties; an average increase of 61%, 59%, and 31% was measured for flexural strength, flexural modulus, and tensile strength, respectively, compared to the 3D printed epoxy-nanoclay nanocomposite structures. The electrical conductivity of 2.4 x 10(-8) and 2.2 x 10(-6) S/cm was measured for the nanocomposites containing 0.5 and 1 vol % CNTs, respectively. Multi-scale characterization of the morphology revealed partial alignment of CNTs in the direction of printing, CNT pull-out and breakage at the fracture surfaces, and nano-scale interactions of the constituents, all of which contribute to the superiority of the nanocomposite with CNTs. The findings show the promise of this ink material and printing method for various applications such as aerospace structures and electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multiscale modeling of carbon nanotube epoxy composites
    Alian, A. R.
    Kundalwal, S. I.
    Meguid, S. A.
    POLYMER, 2015, 70 : 149 - 160
  • [42] Characterization of Carbon Fiber Reinforced Epoxy Composites Modified with Nanoclay and Carbon Nanotubes
    Islam, Md Ekramul
    Mahdi, Tanjheel H.
    Hosur, Mahesh V.
    Jeelani, Shaik
    6TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2015, 105 : 821 - 828
  • [43] The comparison of cure behavior of epoxy and multi-wall carbon nanotube/epoxy composites
    Montazeri, Arash
    Madah, Dorsa
    Shormasti, Naghme Khademi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 124 (03) : 1441 - 1448
  • [44] DIRECT WRITE ADDITIVE MANUFACTURING OF HIGH-STRENGTH, SHORT FIBER REINFORCED SANDWICH PANELS
    Nawafleh, Nashat
    Celik, Emrah
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 2A, 2020,
  • [45] Progress and opportunities in additive manufacturing of electrically conductive polymer composites
    Yan, Yinjia
    Jiang, Yixue
    Ng, Evelyn Ling Ling
    Zhang, Yanni
    Owh, Cally
    Wang, Fuke
    Song, Qing
    Feng, Tao
    Zhang, Biao
    Li, Peng
    Loh, Xian Jun
    Chan, Siew Yin
    Chan, Benjamin Qi Yu
    MATERIALS TODAY ADVANCES, 2023, 17
  • [46] A Constrained Assembly Strategy for High-Strength Natural Nanoclay Film
    Li, Hao
    Zhao, Jingzhe
    Huang, Limei
    Xia, Penghui
    Zhou, Yahong
    Wang, Jianfeng
    Jiang, Lei
    ACS NANO, 2022, 16 (04) : 6224 - 6232
  • [47] Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites
    Yang, Kai
    Gu, Mingyuan
    Guo, Yiping
    Pan, Xifeng
    Mu, Guohong
    CARBON, 2009, 47 (07) : 1723 - 1737
  • [48] Fatigue characterization of acid-treated carbon nanotube/epoxy composites
    Jen, Yi-Ming
    Huang, Chien-Yang
    JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (13) : 1665 - 1675
  • [49] Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites
    Roy, Sagar
    Petrova, Roumiana S.
    Mitra, Somenath
    NANOTECHNOLOGY REVIEWS, 2018, 7 (06) : 475 - 485
  • [50] Multifunctional carbon nanotube-epoxy composites for thermal energy management
    Kaul, Pankaj B.
    Bifano, Michael F. P.
    Prakash, Vikas
    JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (01) : 77 - 95