An arch-linear composed beam piezoelectric energy harvester with magnetic coupling: Design, modeling and dynamic analysis

被引:25
|
作者
Chen, Xiaoyu [1 ,3 ]
Zhang, Xuhui [1 ,2 ]
Wang, Lin [1 ]
Chen, Luyang [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Mech Engn, Xian 710054, Peoples R China
[2] Shaanxi Key Lab Mine Electromech Equipment Intell, Xian 710054, Peoples R China
[3] Zunyi Normal Coll, Coll Engn, Zunyi 563006, Peoples R China
关键词
Energy harvesting; Arch-linear configuration; Bistable characteristic; Dynamic behavior; PERFORMANCE; SINGLE; FORCE; SHAPE;
D O I
10.1016/j.jsv.2021.116394
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A novel bistable piezoelectric energy harvester (BPEH-C) is constructed by introducing a nonlinear magnetic force on an arch-linear composed beam. The nonlinear magnetic model is obtained by using equivalent magnetizing current method, and the nonlinear restoring force model of the arch-linear composed beam is acquired based on fitting experimental data. The corresponding coupled governing equations are derived by using generalized Hamilton principle. The dynamic responses are obtained by solving the coupling equations with the ode45 method, and the effect mechanism of the excitation frequency and amplitude on large-amplitude periodic response is discussed and analyzed via the bifurcation diagram, the maximum Lyapunov exponent diagram, and the Poincare ' map. Moreover, the correctness of the theoretical analyses is qualitatively verified by experiments. The results reveal that the threshold excitation amplitude for the system to realize large-amplitude interwell oscillation is increased with the increasing of the excitation frequency, if the system starts with appropriate excitation level, it can do largeamplitude interwell oscillations at low excitation frequency. Compared with the non-magnet energy harvester, the BPEH-C has much better energy harvesting performance owing to the nonlinear magnetic force being efficiently introduced to broaden bandwidth. The arch-linear composed beam is superior to the conventional straight beam in enhancing output voltage and power. Overall, introducing the arch-linear composed beam into the bistable piezoelectric energy harvesting system contributes to enhance power output, improve energy harvesting performance of the piezoelectric energy harvester.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester Under Vortex-Induced Vibration
    Hou, Chengwei
    Shan, Xiaobiao
    Zhang, Leian
    Song, Rujun
    Yang, Zhengbao
    IEEE ACCESS, 2020, 8 : 108913 - 108927
  • [2] A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis
    Zhou, Shengxi
    Yan, Bo
    Inman, Daniel J.
    SENSORS, 2018, 18 (05)
  • [3] Electromechanical coupling modeling research on the piecewise-linear piezoelectric energy harvester
    Liu S.
    Cheng Q.
    Zhao D.
    Feng L.
    Liu, Shaogang (liushaogang@hrbeu.edu.cn), 1600, Editorial Board of Journal of Harbin Engineering (37): : 1573 - 1579
  • [4] Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester
    Elahi, Hassan
    Eugeni, Marco
    Lampani, Luca
    Gaudenzi, Paolo
    INTEGRATED FERROELECTRICS, 2020, 211 (01) : 132 - 151
  • [5] Modeling and experimental investigation of asymmetric distance with magnetic coupling based on galloping piezoelectric energy harvester
    Zhang, Huirong
    Zhang, Leian
    Wang, Yuanbo
    Yang, Xiaohui
    Song, Rujun
    Sui, Wentao
    SMART MATERIALS AND STRUCTURES, 2022, 31 (06)
  • [6] Design and analysis of high output piezoelectric energy harvester using non uniform beam
    Raju, S. Srinivasulu
    Umapathy, M.
    Uma, G.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2020, 27 (03) : 218 - 227
  • [7] Finite Element Analysis of a Novel Piezoelectric Arch Energy Harvester
    Li, Congjian
    Li, Bing
    Yang, Xiaojun
    Meng, Max Q. -H.
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 2749 - 2754
  • [8] Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
    Wang, Junlei
    Geng, Linfeng
    Zhou, Shengxi
    Zhang, Zhien
    Lai, Zhihui
    Yurchenko, Daniil
    ACTA MECHANICA SINICA, 2020, 36 (03) : 592 - 605
  • [9] Design and analysis of a multi-step piezoelectric energy harvester using buckled beam driven by magnetic excitation
    Jiang, Xin-Ya
    Zou, Hong-Xiang
    Zhang, Wen-Ming
    ENERGY CONVERSION AND MANAGEMENT, 2017, 145 : 129 - 137
  • [10] Dynamic analysis of a functionally graded piezoelectric energy harvester under magnetic interaction
    Derayatifar, Mahdi
    Sedaghati, Ramin
    Chandramohan, Sujatha
    Packirisamy, Muthukumaran
    Bhat, Rama
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (09) : 986 - 1000