Upgrading of Ethanol to 1,1-Diethoxyethane by Proton-Exchange Membrane Electrolysis

被引:15
作者
Kawaguchi, Daisuke [1 ]
Ogihara, Hitoshi [1 ]
Kurokawa, Hideki [1 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, 255 Shimo Okubo, Saitama 3388570, Japan
关键词
HYDROGEN-PRODUCTION; SELECTIVE OXIDATION; DIRECT CONVERSION; NANOSHEETS; CELL; ACETALDEHYDE; EVOLUTION; PRODUCT; TOLUENE; WATER;
D O I
10.1002/cssc.202101188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The direct acetalization of ethanol is a significant challenge for upgrading bioethanol to value-added chemicals. In this study, 1,1-diethoxyethane (DEE) is selectively synthesized by the electrolysis of ethanol using a proton-exchange membrane (PEM) reactor. In the PEM reactor, a Pt/C catalyst promoted the electro-oxidation of ethanol to acetaldehyde. The Nafion membrane used as the PEM served as a solid acid catalyst for the acetalization of ethanol and electrochemically formed acetaldehyde. DEE was obtained at high faradaic efficiency (78 %) through sequential electrochemical and nonelectrochemical reactions. The DEE formation rate through PEM electrolysis was higher than that of reported systems. At the cathode, protons extracted from ethanol were reduced to H-2. The electrochemical approach can be utilized as a sustainable process for upgrading bioethanol to chemicals because it can use renewable electricity and does not require chemical reagents (e. g., oxidants and electrolytes).
引用
收藏
页码:4431 / 4438
页数:8
相关论文
共 50 条
[41]   Hybrid Proton-Exchange Membrane Based on Perfluorosulfonated Polymers and Resorcinol-Formaldehyde Hydrogel [J].
Trefilov, Alexandra Maria Isabel ;
Balan, Adriana ;
Stamatin, Ioan .
POLYMERS, 2021, 13 (23)
[42]   Synthesis of RuxIr1-xO2 anode electrocatalysts for Proton Exchange Membrane Water Electrolysis [J].
Audichon, T. ;
Mamaca, N. ;
Morais, C. ;
Servat, K. ;
Napporn, T. W. ;
Mayousse, E. ;
Guillet, N. ;
Kokoh, K. B. .
ELECTROCATALYSIS APPLIED TO FUEL CELLS AND ELECTROLYZERS, 2013, 45 (21) :47-58
[43]   Dynamic multi-physics 1D-model of a proton exchange membrane electrolysis cell [J].
Engel, Franziska K. ;
Wodak, Sebastian ;
Zander, Hans-Joerg ;
Ulmer, Sebastian ;
Fahr, Steffen ;
Geraldy, Isabell ;
Rehfeldt, Sebastian ;
Klein, Harald .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 119 :56-72
[44]   Reinforced short-side-chain Aquivion® membrane for proton exchange membrane water electrolysis [J].
Siracusano, Stefania ;
Panto, Fabiola ;
Tonella, Stefano ;
Oldani, Claudio ;
Arico, Antonino S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (35) :15557-15570
[45]   Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage [J].
Han, Ruiyi ;
Wu, Peiyi .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) :18351-18358
[46]   Evaluation of the Efficiency of an Elevated Temperature Proton Exchange Membrane Water Electrolysis System [J].
Bonanno, Marco ;
Mueller, Karsten ;
Bensmann, Boris ;
Hanke-Rauschenbach, Richard ;
Peach, Retha ;
Thiele, Simon .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
[47]   Optimization of anode porous transport layer in proton exchange membrane water electrolysis [J].
Xu, Guizhi ;
Du, Xiaoze ;
Que, Liulin ;
Zhang, Liang ;
Li, Jun ;
Ye, Dingding ;
Song, Jie ;
Gao, Jie .
APPLIED THERMAL ENGINEERING, 2025, 263
[48]   Proton Exchange Membrane Water Electrolysis Modeling for System Simulation and Degradation Analysis [J].
Goessling, Soenke ;
Stypka, Sebastian ;
Bahr, Matthias ;
Oberschachtsiek, Bernd ;
Heinzel, Angelika .
CHEMIE INGENIEUR TECHNIK, 2018, 90 (10) :1437-1442
[49]   Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell [J].
Wang ZhiMing ;
Xu Chao ;
Wang XueYe ;
Liao ZhiRong ;
Du XiaoZe .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) :1555-1566
[50]   RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis [J].
Cross, Michael W. ;
Smith, Richard P., III ;
Varhue, Walter J. .
MICROMACHINES, 2021, 12 (11)