Automation of Lung Ultrasound Interpretation via Deep Learning for the Classification of Normal versus Abnormal Lung Parenchyma: A Multicenter Study

被引:19
作者
Arntfield, Robert [1 ]
Wu, Derek [2 ]
Tschirhart, Jared [2 ]
VanBerlo, Blake [3 ]
Ford, Alex
Ho, Jordan [2 ]
McCauley, Joseph [4 ]
Wu, Benjamin
Deglint, Jason [5 ]
Chaudhary, Rushil [2 ]
Dave, Chintan [1 ]
VanBerlo, Bennett [6 ]
Basmaji, John [1 ]
Millington, Scott [7 ]
机构
[1] Western Univ, Div Crit Care Med, London, ON N6A 5C1, Canada
[2] Western Univ, Schulich Sch Med & Dent, London, ON N6A 5C1, Canada
[3] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Fac Engn, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Fac Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[6] Univ Western Ontario, Fac Engn, London, ON N6A 5C1, Canada
[7] Univ Ottawa, Dept Crit Care Med, Ottawa, ON K1N 6N5, Canada
关键词
deep learning; ultrasound; lung ultrasound; artificial intelligence; automation; imaging; B-LINES; DIAGNOSIS; FAILURE;
D O I
10.3390/diagnostics11112049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lung ultrasound (LUS) is an accurate thoracic imaging technique distinguished by its handheld size, low-cost, and lack of radiation. User dependence and poor access to training have limited the impact and dissemination of LUS outside of acute care hospital environments. Automated interpretation of LUS using deep learning can overcome these barriers by increasing accuracy while allowing point-of-care use by non-experts. In this multicenter study, we seek to automate the clinically vital distinction between A line (normal parenchyma) and B line (abnormal parenchyma) on LUS by training a customized neural network using 272,891 labelled LUS images. After external validation on 23,393 frames, pragmatic clinical application at the clip level was performed on 1162 videos. The trained classifier demonstrated an area under the receiver operating curve (AUC) of 0.96 (& PLUSMN;0.02) through 10-fold cross-validation on local frames and an AUC of 0.93 on the external validation dataset. Clip-level inference yielded sensitivities and specificities of 90% and 92% (local) and 83% and 82% (external), respectively, for detecting the B line pattern. This study demonstrates accurate deep-learning-enabled LUS interpretation between normal and abnormal lung parenchyma on ultrasound frames while rendering diagnostically important sensitivity and specificity at the video clip level.
引用
收藏
页数:17
相关论文
共 45 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis [J].
Aggarwal, Ravi ;
Sounderajah, Viknesh ;
Martin, Guy ;
Ting, Daniel S. W. ;
Karthikesalingam, Alan ;
King, Dominic ;
Ashrafian, Hutan ;
Darzi, Ara .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[3]   Interstitial Pulmonary Edema Assessed by Lung Ultrasound on Ascent to High Altitude and Slight Association with Acute Mountain Sickness: A Prospective Observational Study [J].
Alsup, Carl ;
Lipman, Grant S. ;
Pomeranz, David ;
Huang, Rwo-Wen ;
Burns, Patrick ;
Juul, Nicholas ;
Phillips, Caleb ;
Jurkiewicz, Carrie ;
Cheffers, Mary ;
Evans, Christina ;
Saraswathula, Anirudh ;
Baumeister, Peter ;
Lai, Lucinda ;
Rainey, Jessica ;
Lobo, Viveta .
HIGH ALTITUDE MEDICINE & BIOLOGY, 2019, 20 (02) :150-156
[4]  
[Anonymous], 2020, DIAGN IM DAT ANN STA
[5]   A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study) [J].
Araiza-Garaygordobil, Diego ;
Gopar-Nieto, Rodrigo ;
Martinez-Amezcua, Pablo ;
Cabello-Lopez, Alejandro ;
Alanis-Estrada, Gabriela ;
Luna-Herbert, Abraham ;
Gonzalez-Pacheco, Hector ;
Paredes-Paucar, Cynthia Paola ;
Sierra-Lara, Martinez Daniel ;
Cruz, Jose Luis Briseno-De la ;
Rodriguez-Zanella, Cynthia Hugo ;
Martinez-Rios, Marco Antonio ;
Arias-Mendoza, Alexandra .
AMERICAN HEART JOURNAL, 2020, 227 :31-39
[6]   Development of a convolutional neural network to differentiate among the etiology of similar appearing pathological B lines on lung ultrasound: a deep learning study [J].
Arntfield, Robert ;
VanBerlo, Blake ;
Alaifan, Thamer ;
Phelps, Nathan ;
White, Matthew ;
Chaudhary, Rushil ;
Ho, Jordan ;
Wu, Derek .
BMJ OPEN, 2021, 11 (03)
[7]   Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm [J].
Baloescu, Cristiana ;
Toporek, Grzegorz ;
Kim, Seungsoo ;
McNamara, Katelyn ;
Liu, Rachel ;
Shaw, Melissa M. ;
McNamara, Robert L. ;
Raju, Balasundar I. ;
Moore, Christopher L. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (11) :2312-2320
[8]   Pulmonary Critical Care Fellows' Use of and Self-reported Barriers to Learning Bedside Ultrasound During Training Results of a National Survey [J].
Brady, Anna K. ;
Spitzer, Carleen R. ;
Kelm, Diana ;
Brosnahan, Shari B. ;
Latifi, Mani ;
Burkart, Kristin M. .
CHEST, 2021, 160 (01) :231-237
[9]   COVID-19 outbreak: less stethoscope, more ultrasound [J].
Buonsenso, Danilo ;
Pata, Davide ;
Chiaretti, Antonio .
LANCET RESPIRATORY MEDICINE, 2020, 8 (05) :E27-E27
[10]   Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images [J].
Byra, Michal ;
Styczynski, Grzegorz ;
Szmigielski, Cezary ;
Kalinowski, Piotr ;
Michalowski, Lukasz ;
Paluszkiewicz, Rafal ;
Ziarkiewicz-Wroblewska, Bogna ;
Zieniewicz, Krzysztof ;
Sobieraj, Piotr ;
Nowicki, Andrzej .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (12) :1895-1903