DATA SAMPLING METHODS FOR IMBALANCED CLASSIFICATION: A RANDOM FOREST STUDY FOR PREDICTING TREATMENT SWITCHING IN MULTIPLE SCLEROSIS

被引:0
作者
Li, J. [1 ]
Huang, Y. [1 ]
Aparasu, R. R. [1 ]
机构
[1] Univ Houston, Coll Pharm, Houston, TX 77030 USA
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
MSR32
引用
收藏
页码:S524 / S524
页数:1
相关论文
共 50 条
[21]   Research on the Classification of High Dimensional Imbalanced Data Based on the Optimizational Random Forest Algorithm [J].
Bo, Su .
PROCEEDINGS OF 2017 9TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2017, :228-231
[22]   Performance enrichment through parameter tuning of random forest classification for imbalanced data applications [J].
More, Anjali S. ;
Rana, Dipti P. .
MATERIALS TODAY-PROCEEDINGS, 2022, 56 :3585-3593
[23]   Handling Imbalanced Data in Customer Churn Prediction Using Combined Sampling and Weighted Random Forest [J].
Effendy, Veronikha ;
Adiwijaya ;
Baizal, Z. K. A. .
2014 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2014,
[24]   Cluster-based Under-sampling with Random Forest for Multi-Class Imbalanced Classification [J].
Arafat, Md. Yasir ;
Hoque, Sabera ;
Farid, Dewan Md. .
2017 11TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA), 2017,
[25]   Advanced EOR screening methodology based on LightGBM and random forest: A classification problem with imbalanced data [J].
Seyyedattar, Masoud ;
Afshar, Majid ;
Zendehboudi, Sohrab ;
Butt, Stephen .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (02) :846-867
[26]   An Optimized Random Forest Classification Method for Processing Imbalanced Data Sets of Alzheimer's Disease [J].
Sun, Haijing ;
Wang, Anna ;
Feng, Yun ;
Liu, Chen .
PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, :1670-1673
[27]   Multi-class random forest model to classify wastewater treatment imbalanced data [J].
Distefano, Veronica ;
Palma, Monica ;
De Iaco, Sandra .
SOCIO-ECONOMIC PLANNING SCIENCES, 2024, 95
[28]   Predictors of treatment switching in the Big Multiple Sclerosis Data Network [J].
Spelman, Tim ;
Magyari, Melinda ;
Butzkueven, Helmut ;
van der Walt, Anneke ;
Vukusic, Sandra ;
Trojano, Maria ;
Iaffaldano, Pietro ;
Horakova, Dana ;
Drahota, Jiri ;
Pellegrini, Fabio ;
Hyde, Robert ;
Duquette, Pierre ;
Lechner-Scott, Jeannette ;
Sajedi, Seyed Aidin ;
Lalive, Patrice ;
Shaygannejad, Vahid ;
Ozakbas, Serkan ;
Eichau, Sara ;
Alroughani, Raed ;
Terzi, Murat ;
Girard, Marc ;
Kalincik, Tomas ;
Grand'Maison, Francois ;
Skibina, Olga ;
Khoury, Samia J. ;
Yamout, Bassem ;
Sa, Maria Jose ;
Gerlach, Oliver ;
Blanco, Yolanda ;
Karabudak, Rana ;
Oreja-Guevara, Celia ;
Altintas, Ayse ;
Hughes, Stella ;
Mccombe, Pamela ;
Ampapa, Radek ;
de Gans, Koen ;
Mcguigan, Chris ;
Soysal, Aysun ;
Prevost, Julie ;
John, Nevin ;
Inshasi, Jihad ;
Stawiarz, Leszek ;
Manouchehrinia, Ali ;
Forsberg, Lars ;
Sellebjerg, Finn ;
Glaser, Anna ;
Pontieri, Luigi ;
Joensen, Hanna ;
Rasmussen, Peter Vestergaard ;
Sejbaek, Tobias .
FRONTIERS IN NEUROLOGY, 2023, 14
[29]   Classification of Travel Data with Multiple Sensor Information using Random Forest [J].
Shafique, Muhammad Awais ;
Hato, Eiji .
19TH EURO WORKING GROUP ON TRANSPORTATION MEETING (EWGT2016), 2017, 22 :144-153
[30]   Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data [J].
Muchlinski, David ;
Siroky, David ;
He, Jingrui ;
Kocher, Matthew .
POLITICAL ANALYSIS, 2016, 24 (01) :87-103