Feature Pyramid Nonlocal Network With Transform Modal Ensemble Learning for Breast Tumor Segmentation in Ultrasound Images

被引:19
作者
Tang, Peng [1 ,2 ]
Yang, Xintong [3 ]
Nan, Yang [4 ]
Xiang, Shao [5 ]
Liang, Qiaokang [6 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Tech Univ Munich, Dept Informat, D-80333 Munich, Germany
[3] State Grid Henan Elect Power Co, Econ & Technol Res Inst, Zhengzhou 450052, Peoples R China
[4] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2BX, England
[5] Wuhan Univ, Informat Engn Surveying Mapping & Remote Sensing, Wuhan 430079, Peoples R China
[6] Hunan Univ, Coll Elect & Informat Engn, Natl Engn Lab Robot Vis Percept & Control, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Breast tumors; Ultrasonic imaging; Feature extraction; Object segmentation; Breast cancer; Transforms; Breast cancer segmentation; deep learning (DL); nonlocal module; transform modal ensemble learning (TMEL); ultrasound images; SNAKE MODEL; CLASSIFICATION; ALGORITHM; MASSES;
D O I
10.1109/TUFFC.2021.3098308
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Automated breast ultrasound image segmentation is essential in a computer-aided diagnosis (CAD) system for breast tumors. In this article, we present a feature pyramid nonlocal network (FPNN) with transform modal ensemble learning (TMEL) for accurate breast tumor segmentation in ultrasound images. Specifically, the FPNN fuses multilevel features under special consideration of long-range dependencies by combining the nonlocal module and feature pyramid network. Additionally, the TMEL is introduced to guide two iFPNNs to extract different tumor details. Two publicly available datasets, i.e., the Dataset-Cairo University and Dataset-Merge, were used for evaluation. The proposed FPNN-TMEL achieves a Dice score of 84.70% +/- 0.53%, Jaccard Index (Jac) of 78.10% +/- 0.48% and Hausdorff distance (HD) of 2.815 +/- 0.016 mm on the Dataset-Cairo University, and Dice of 87.00% +/- 0.41%, Jac of 79.16% +/- 0.56%, and HD of 2.781 +/- 0.035 mm on the Dataset-Merge. Qualitative and quantitative experiments show that our method outperforms other state-of-the-art methods for breast tumor segmentation in ultrasound images. Our code is available at https://github.com/pixixiaonaogou/FPNN-TMEL.
引用
收藏
页码:3549 / 3559
页数:11
相关论文
共 49 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Bhatt M., 2020, PROC IEEE INT ULTRAS, P1
[4]   Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network [J].
Byra, Michal ;
Jarosik, Piotr ;
Szubert, Aleksandra ;
Galperin, Michael ;
Ojeda-Fournier, Haydee ;
Olson, Linda ;
O'Boyle, Mary ;
Comstock, Christopher ;
Andre, Michael .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
[5]   Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors [J].
Chang, RF ;
Wu, WJ ;
Moon, WK ;
Chen, DR .
BREAST CANCER RESEARCH AND TREATMENT, 2005, 89 (02) :179-185
[6]   Cell-based dual snake model: A new approach to extracting highly winding boundaries in the ultrasound images [J].
Chen, CM ;
Lu, HHS ;
Huang, YS .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2002, 28 (08) :1061-1073
[7]  
Chen YT, 2001, ANZIIS 2001: PROCEEDINGS OF THE SEVENTH AUSTRALIAN AND NEW ZEALAND INTELLIGENT INFORMATION SYSTEMS CONFERENCE, P19
[8]   Automated breast cancer detection and classification using ultrasound images: A survey [J].
Cheng, H. D. ;
Shan, Juan ;
Ju, Wen ;
Guo, Yanhui ;
Zhang, Ling .
PATTERN RECOGNITION, 2010, 43 (01) :299-317
[9]   Approaches for automated detection and classification of masses in mammograms [J].
Cheng, HD ;
Shi, XJ ;
Min, R ;
Hu, LM ;
Cai, XR ;
Du, HN .
PATTERN RECOGNITION, 2006, 39 (04) :646-668
[10]   Automatic superpixel-based segmentation method for breast ultrasound images [J].
Daoud, Mohammad I. ;
Atallah, Ayman A. ;
Awwad, Falah ;
Al-Najjar, Mahasen ;
Alazrai, Rami .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 (78-96) :78-96