In this study we estimated the structural parameters of (water+propylene glycol)/sucrose esters/(benzaldhyde+ethanol) systems. The weight ratios of water/propylene glycol and that of benzaldhyde/ethanol equal 2 and 1, respectively. The sucrose esters were sucrose laurates (L595, L1695, and SM1200), sucrose myristate (M1695), sucrose palmitate (P1670), sucrose oleate (O1570), and sucrose stearate (S1570). The pseudoternary phase behavior at 37 degrees C was explored to determine the extension of the microemulsion phase regions. A one-phase microemulsion region extending from the oil rich region to the water rich corner was observed in these systems. It was found that minor changes in the surfactant chain length, structure, and composition suffice to provoke a considerable change in the aggregation number, core radius and interfacial area per surfactant and cosurfactant molecules head groups in the formed microemulsions. The interfacial area per surfactant head group decreases with the increase in the surfactant chain length. For a sucrose ester with a given chain length the interfacial area per surfactant head group decreases with the increase in the surfactant monoester content. The interfacial area per surfactant head group increases with the increase in the surfactant concentration and the water core volume in the formulated microemulsions.