The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations

被引:28
作者
Bonet, Jose [1 ]
Domanski, Pawel [2 ,3 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, Inst Matemat Pura & Aplicada, E-46071 Valencia, Spain
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[3] Polish Acad Sci, Inst Math, Poznan Branch, PL-61614 Poznan, Poland
关键词
splitting of short exact sequences; space of distributions; space of ultradistributions in the sense of Beurling; functor Proj(1); functor Ext(1); PLS-space; locally convex space; Frechet space; linear partial differential operator; convolution operator; vector-valued equation; solvability; analytic dependence on parameters; smooth dependence on parameter;
D O I
10.1016/j.aim.2007.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
where E is the dual of a Frechet Schwartz space and X, Y are PLS-spaces, like the spaces of distributions or real analytic functions or their subspaces. In particular, we characterize pairs (E, X) as above such that Ext(1) (E, X) = 0 in the category of PLS-spaces and apply this characterization to many natural spaces X and E. In particular, we discover an extension of the (DN)-(Omega) splitting theorem of Vogt and Wagner. These abstract results are applied to parameter dependence of linear partial differential operators and surjectivity of such operators on spaces of vector-valued distributions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:561 / 585
页数:25
相关论文
共 47 条
[21]  
FRERICK L, 1996, FUNCTIONAL ANAL, P165
[22]  
H├a┬Armander L., 1990, N HOLLAND MATH LIB, V7
[23]  
Hormander L, 1990, The Analysis of Linear Partial Differential Operators
[24]  
Jarchow H., 1981, LOCALLY CONVEX SPACE
[25]  
KRONE J, 1984, MATH Z, V190, P349
[26]  
KUNKLE D, 2001, THESIS WUPPERTAL
[27]   LINEAR-EQUATIONS DEPENDING DIFFERENTIABLY ON A PARAMETER [J].
MANTLIK, F .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (02) :231-250
[28]   PARTIAL-DIFFERENTIAL OPERATORS DEPENDING ANALYTICALLY ON A PARAMETER [J].
MANTLIK, F .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) :577-599
[29]   A CHARACTERIZATION OF THE QUASI-NORMABLE FRECHET SPACES [J].
MEISE, R ;
VOGT, D .
MATHEMATISCHE NACHRICHTEN, 1985, 122 :141-150