GLOSS: Tensor-based anomaly detection in spatiotemporal urban traffic data

被引:21
作者
Sofuoglu, Seyyid Emre [1 ]
Aviyente, Selin [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Anomaly detection; Tensor decomposition; Graph regularization; ADMM; Urban spatiotemporal data; ALTERNATING DIRECTION METHOD;
D O I
10.1016/j.sigpro.2021.108370
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection in spatiotemporal data is a problem encountered in a variety of applications including urban traffic monitoring. For urban traffic data, anomalies refer to unusual events such as traffic conges-tion and unexpected crowd gatherings. Detecting these anomalies is challenging due to the scarcity of anomalous events and the dependence of anomaly definition on time and space. Existing spatiotemporal anomaly detection methods cannot preserve the spatial and temporal correlations and do not take the structure of anomalies into account. In this paper, we introduce a temporally regularized, locally con-sistent, robust low-rank plus sparse tensor model for spatiotemporal anomaly detection. The proposed method takes the spatially sparse and temporally smooth structure of urban anomalies into account by modeling the anomalies as the sparse part of the tensor and minimizing the total variation across the temporal mode of this part. The local consistency of the low-rank part is ensured using a manifold em-bedding approach. The proposed approach is referred to as Graph Regularized Low-rank plus Temporally Smooth Sparse decomposition (GLOSS) and is evaluated on synthetic and real spatiotemporal urban traffic data. The results illustrate the accuracy and robustness of the proposed method with respect to missing data, noise and anomaly strength. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Multi-property Tensor-Based Learning for Abnormal Event Detection [J].
Bakalos, Nikolaos ;
Doulamis, Nikolaos ;
Doulamis, Anastasios ;
Makantasis, Konstantinos .
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 :325-335
[32]   Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor [J].
Sun, Bo ;
Xu, Yijun ;
Wang, Qinling ;
Lu, Shuai ;
Yu, Ruizhi ;
Gu, Wei ;
Mili, Lamine .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) :4767-4770
[33]   Tensor-based Space Debris Detection for Satellite Mega-constellations [J].
Daoust, Olivier ;
Nayir, Hasan ;
Azam, Irfan ;
Lesage-Landry, Antoine ;
Kurt, Gunes Karabulut .
2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, :1926-1931
[34]   HYPERSPECTRAL ANOMALY DETECTION BASED ON LOW RANK AND SPARSE TENSOR DECOMPOSITION [J].
Qin, Fuhe ;
Wu, Zebin ;
Xu, Yang ;
Liu, Hongyi ;
Zhang, Yan ;
Wei, Zhihui .
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, :2240-2243
[35]   HYPERSPECTRAL ANOMALY DETECTION BASED ON LOCAL-TENSOR-NUCLEAR-NORM [J].
Mishima, Mio ;
Kobayashi, Iori ;
Matsuoka, Ryo .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :2157-2160
[36]   Hyperspectral Anomaly Detection Based on Regularized Background Abundance Tensor Decomposition [J].
Shang, Wenting ;
Jouni, Mohamad ;
Wu, Zebin ;
Xu, Yang ;
Dalla Mura, Mauro ;
Wei, Zhihui .
REMOTE SENSING, 2023, 15 (06)
[37]   Network Anomaly Detection based on Traffic Prediction [J].
Wang, Fengyu ;
Gong, Bin ;
Hu, Yi ;
Zhang, Ningbo .
2009 INTERNATIONAL CONFERENCE ON SCALABLE COMPUTING AND COMMUNICATIONS & EIGHTH INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTING, 2009, :449-454
[38]   Anomaly detection based on traffic information structure [J].
Zhu Y.-W. ;
Yang J.-H. ;
Zhang J.-X. .
Ruan Jian Xue Bao/Journal of Software, 2010, 21 (10) :2573-2583
[39]   Voila: Visual Anomaly Detection and Monitoring with Streaming Spatiotemporal Data [J].
Cao, Nan ;
Lin, Chaoguang ;
Zhu, Qiuhan ;
Lin, Yu-Ru ;
Teng, Xian ;
Wen, Xidao .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) :23-33
[40]   Power Equipment Anomaly Detection Based on Spatiotemporal Clustering [J].
Chen, Yufeng ;
Du, Xiuming ;
Chen, Jiajun ;
Yan, Yingjie ;
Sheng, Gehao ;
Yi, Yang .
2016 INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS (CMD), 2016, :392-395