GLOSS: Tensor-based anomaly detection in spatiotemporal urban traffic data

被引:21
作者
Sofuoglu, Seyyid Emre [1 ]
Aviyente, Selin [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Anomaly detection; Tensor decomposition; Graph regularization; ADMM; Urban spatiotemporal data; ALTERNATING DIRECTION METHOD;
D O I
10.1016/j.sigpro.2021.108370
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection in spatiotemporal data is a problem encountered in a variety of applications including urban traffic monitoring. For urban traffic data, anomalies refer to unusual events such as traffic conges-tion and unexpected crowd gatherings. Detecting these anomalies is challenging due to the scarcity of anomalous events and the dependence of anomaly definition on time and space. Existing spatiotemporal anomaly detection methods cannot preserve the spatial and temporal correlations and do not take the structure of anomalies into account. In this paper, we introduce a temporally regularized, locally con-sistent, robust low-rank plus sparse tensor model for spatiotemporal anomaly detection. The proposed method takes the spatially sparse and temporally smooth structure of urban anomalies into account by modeling the anomalies as the sparse part of the tensor and minimizing the total variation across the temporal mode of this part. The local consistency of the low-rank part is ensured using a manifold em-bedding approach. The proposed approach is referred to as Graph Regularized Low-rank plus Temporally Smooth Sparse decomposition (GLOSS) and is evaluated on synthetic and real spatiotemporal urban traffic data. The results illustrate the accuracy and robustness of the proposed method with respect to missing data, noise and anomaly strength. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
[21]   LOW-RANK ON GRAPHS PLUS TEMPORALLY SMOOTH SPARSE DECOMPOSITION FOR ANOMALY DETECTION IN SPATIOTEMPORAL DATA [J].
Sofuoglu, Seyyid Emre ;
Aviyente, Selin .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :5614-5618
[22]   Tensor-Based Multi-Scale Correlation Anomaly Detection for AIoT-Enabled Consumer Applications [J].
Zeng, Jiuzhen ;
Yang, Laurence T. ;
Wang, Chao ;
Deng, Xianjun ;
Yang, Xiangli .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2025, 71 (01) :2061-2071
[23]   Generalized Graph Laplacian Based Anomaly Detection for Spatiotemporal MicroPMU Data [J].
Cui, Mingjian ;
Wang, Jianhui ;
Florita, Anthony R. ;
Zhang, Yingchen .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (05) :3960-3963
[24]   A Tensor-Based Method for Completion of Missing Electromyography Data [J].
Akmal, Muhammad ;
Zubair, Syed ;
Jochumsen, Mads ;
Kamavuako, Ernest Nlandu ;
Niazi, Imran Khan .
IEEE ACCESS, 2019, 7 :104710-104720
[25]   A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation [J].
Chen, Xinyu ;
He, Zhaocheng ;
Sun, Lijun .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 98 :73-84
[26]   Online Tensor-Based Learning Model for Structural Damage Detection [J].
Anaissi, Ali ;
Suleiman, Basem ;
Zandavi, Seid Miad .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (06)
[27]   Urban Traffic Data Imputation With Detrending and Tensor Decomposition [J].
Gong, Chuanfei ;
Zhang, Yaying .
IEEE ACCESS, 2020, 8 :11124-11137
[28]   Tensor-Based Sparsity Order Estimation for Big Data Applications [J].
Liu, Kefei ;
Roemer, Florian ;
da Costa, Joao Paulo C. L. ;
Xiong, Jie ;
Yan, Yi-Sheng ;
Wang, Wen-Qin ;
Del Galdo, Giovanni .
2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, :648-652
[29]   Network anomaly detection based on tensor decomposition [J].
Streit, Ananda ;
Santos, Gustavo H. A. ;
Leao, Rosa M. M. ;
Silva, Edmundo de Souza E. ;
Menasche, Daniel ;
Towsley, Don .
COMPUTER NETWORKS, 2021, 200
[30]   Network Anomaly Detection based on Tensor Decomposition [J].
Streit, Ananda ;
Santos, Gustavo ;
Leao, Rosa M. M. ;
Silva, Edmundo de Souza E. ;
Menasche, Daniel ;
Towsley, Don .
2020 MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE (MEDCOMNET), 2020,