Tetrahedron Equation and Quantum R Matrices for Modular Double of Uq (Dn+1(2)), Uq (A2n(2)) and Uq (Cn(1))

被引:0
作者
Kuniba, Atsuo [1 ]
Okado, Masato [2 ]
Sergeev, Sergey [3 ]
机构
[1] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[2] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
[3] Univ Canberra, Fac Educ Sci Technol Engn & Math, Canberra, ACT 2106, Australia
基金
澳大利亚研究理事会;
关键词
Tetrahedron equation; q-oscillator algebra; Yang-Baxter equation; modular double; REPRESENTATIONS; MODELS;
D O I
10.1007/s11005-015-0747-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a homomorphism from the quantum affine algebras , to the n-fold tensor product of the q-oscillator algebra . Their action commutes with the solutions of the Yang-Baxter equation obtained by reducing the solutions of the tetrahedron equation associated with the modular and the Fock representations of . In the former case, the commutativity is enhanced to the modular double of these quantum affine algebras.
引用
收藏
页码:447 / 461
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1986, P INT C MATH
[2]  
[Anonymous], 1990, INFINITE DIMENSIONAL, DOI DOI 10.1017/CBO9780511626234
[3]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[4]   Quantum geometry of three-dimensional lattices [J].
Bazhanov, Vladimir V. ;
Mangazeev, Vladimir V. ;
Sergeev, Sergey M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   (ZNX)N-1 GENERALIZATION OF THE CHIRAL POTTS-MODEL [J].
BAZHANOV, VV ;
KASHAEV, RM ;
MANGAZEEV, VV ;
STROGANOV, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :393-408
[6]   NEW SOLVABLE LATTICE MODELS IN 3 DIMENSIONS [J].
BAZHANOV, VV ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :453-485
[7]   Zamolodchikov's tetrahedron equation and hidden structure of quantum groups [J].
Bazhanov, VV ;
Sergeev, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3295-3310
[8]   GENERALIZED CHIRAL POTTS MODELS AND MINIMAL CYCLIC REPRESENTATIONS OF UQ(GL(N,C)) [J].
DATE, E ;
JIMBO, M ;
MIKI, K ;
MIWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) :133-147
[9]  
Faddeev L, 2000, MATH PHYS S, V21, P149
[10]  
Frenkel I.B., ARXIV11111033