Characterizing Quantum Instruments: From Nondemolition Measurements to Quantum Error Correction

被引:4
作者
Stricker, Roman [1 ]
Vodola, Davide [2 ,3 ]
Erhard, Alexander [1 ]
Postler, Lukas [1 ]
Meth, Michael [1 ]
Ringbauer, Martin [1 ]
Schindler, Philipp [1 ]
Blatt, Rainer [1 ,4 ,5 ]
Mueller, Markus [6 ,7 ]
Monz, Thomas [1 ,5 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[2] Univ Bologna, Dipartimento Fis & Astron, I-40129 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Otto Hittmair Pl 1, A-6020 Innsbruck, Austria
[5] Alpine Quantum Technol GmbH, A-6020 Innsbruck, Austria
[6] Rhein Westfal TH Aachen, Inst Quantum Informat, D-52056 Aachen, Germany
[7] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, D-52425 Julich, Germany
来源
PRX QUANTUM | 2022年 / 3卷 / 03期
基金
欧洲研究理事会; 欧盟地平线“2020”; 奥地利科学基金会;
关键词
QUBIT; REALIZATION; ENTANGLEMENT; SIMULATION; SYSTEM; CODES; MAPS;
D O I
10.1103/PRXQuantum.3.030318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In advanced quantum processors, quantum operations are increasingly processed along multiple insequence measurements that result in classical data and affect the rest of the computation. Because of the information gain of classical measurements, nonunitary dynamical processes can affect the system, which common quantum channel descriptions fail to describe faithfully. Quantum measurements are correctly treated by so-called quantum instruments, capturing both classical outputs and postmeasurement quantum states. Here we present a general recipe for characterizing quantum instruments and demonstrate its experimental implementation and analysis. Thereby the full dynamics of a quantum instrument can be captured, exhibiting details of the quantum dynamics that would be overlooked with standard techniques. For illustration, we apply our characterization technique to a quantum instrument used for the detection of qubit loss and leakage, which was recently implemented as a building block in a quantum error-correction (QEC) experiment [Nature 585, 207 (2020)]. Our analysis reveals unexpected and in-depth information about the failure modes of the implementation of the quantum instrument. We then numerically study the implications of these experimental failure modes on QEC performance, when the instrument is employed as a building block in QEC protocols on a logical qubit. Our results highlight the importance of careful characterization and modeling of failure modes in quantum instruments, as compared to simplistic hardware-agnostic phenomenological noise models, which fail to predict the undesired behavior of faulty quantum instruments. The presented methods and results are directly applicable to generic quantum instruments and will be beneficial to many complex and high-precision applications.
引用
收藏
页数:28
相关论文
共 50 条
[21]   Complete Physical Characterization of Quantum Nondemolition Measurements via Tomography [J].
Pereira, L. ;
Garcia-Ripoll, J. J. ;
Ramos, And T. .
PHYSICAL REVIEW LETTERS, 2022, 129 (01)
[22]   Quantum error correction with mixed ancilla qubits [J].
Criger, Ben ;
Moussa, Osama ;
Laflamme, Raymond .
PHYSICAL REVIEW A, 2012, 85 (04)
[23]   An efficient simulation of quantum error correction codes [J].
Priya, R. Padma ;
Baradeswaran, A. .
ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) :2167-2175
[24]   Variational Circuit Compiler for Quantum Error Correction [J].
Xu, Xiaosi ;
Benjamin, Simon C. ;
Yuan, Xiao .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)
[25]   Continuous Symmetries and Approximate Quantum Error Correction [J].
Faist, Philippe ;
Nezami, Sepehr ;
Albert, Victor V. ;
Salton, Grant ;
Pastawski, Fernando ;
Hayden, Patrick ;
Preskill, John .
PHYSICAL REVIEW X, 2020, 10 (04)
[26]   Nonlocal quantum information in bipartite quantum error correction [J].
Wilde, Mark M. ;
Fattal, David .
QUANTUM INFORMATION PROCESSING, 2010, 9 (05) :591-610
[27]   Research advances in continuous-variable quantum computation and quantum error correction [J].
Wang Mei-Hong ;
Hao Shu-Hong ;
Qin Zhong-Zhong ;
Su Xiao-Long .
ACTA PHYSICA SINICA, 2022, 71 (16)
[28]   Hybrid approximation approach to the generation of atomic squeezing with quantum nondemolition measurements [J].
Ilo-Okeke, Ebubechukwu O. ;
Kondappan, Manikandan ;
Chen, Ping ;
Mao, Yuping ;
Ivannikov, Valentin ;
Byrnes, Tim .
PHYSICAL REVIEW A, 2023, 107 (05)
[29]   QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING [J].
Gaitan, Frank ;
Li, Ran .
DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 :53-+
[30]   On the efficiency of quantum error correction for quantum image transmission algorithm [J].
Ivanov, S. S. ;
Gilev, P. A. ;
Popov, I. Y. .
PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (04)