On the construction of Griesmer codes of dimension 5

被引:5
作者
Kageyama, Yuuki [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Linear codes; Projective dual; Griesmer; Projective geometry; TERNARY LINEAR CODES;
D O I
10.1007/s10623-013-9914-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct Griesmer [n, 5, d](q) codes for 2q(4) + 1 <= d <= 2q(4) + q(2) - q using some geometric methods such as projective dual and geometric puncturing.
引用
收藏
页码:277 / 280
页数:4
相关论文
共 14 条
[1]   The Correspondence between Projective Codes and 2-weight Codes [J].
Brouwer A.E. ;
Van Eupen M. .
Designs, Codes and Cryptography, 1997, 11 (3) :261-266
[2]   On the minimum length of some linear codes of dimension 5 [J].
Cheon, EJ ;
Kato, T ;
Kim, SJ .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (03) :421-434
[3]  
Grassl M., Tables of linear codes and quantum codes
[4]  
Hill R, 1999, CH CRC RES NOTES MAT, V403, P127
[5]  
Hill R., 1992, Designs, Codes and Cryptography, V2, P137, DOI 10.1007/BF00124893
[6]  
HILL R, 1992, CRYPTOGRAPHY CODING, V2, P75
[7]  
Hirschfeld J., 1998, PROJECTIVE GEOMETRIE
[8]  
Hirschfeld J.W.P., 1991, GEN GALOIS GEOMETRIE
[9]  
KOHNERT A, BEST LINEAR CODES
[10]   On the nonexistence of q-ary linear codes of dimension five [J].
Maruta, T .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 22 (02) :165-177