Signatures of paths transformed by polynomial maps

被引:5
作者
Colmenarejo, Laura [1 ]
Preiss, Rosa [2 ]
机构
[1] UMass Amherst, Dept Math & Stat, Amherst, MA 01003 USA
[2] Tech Univ Berlin, Inst Math, Berlin, Germany
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2020年 / 61卷 / 04期
关键词
Signature tensors; Iterated integrals; Tensor algebra; Shuffle product; Polynomial maps; Zinbiel algebras;
D O I
10.1007/s13366-020-00493-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the signature of piecewise continuously differentiable paths transformed by a polynomial map in terms of the signature of the original path. For this aim, we define recursively an algebra homomorphism between two shuffle algebras on words. This homomorphism does not depend on the path and behaves well with respect to composition and homogeneous maps. We also study this map as a half-shuffle homomorphism and give a generalization of our main theorem in terms of Zinbiel algebras.
引用
收藏
页码:695 / 717
页数:23
相关论文
共 20 条
  • [1] VARIETIES OF SIGNATURE TENSORS
    Amendola, Carlos
    Friz, Peter
    Sturmfels, Bernd
    [J]. FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [2] Balakrishnan J. S., 2013, OPEN BOOK SER, V1, P41
  • [3] The signature of a rough path: Uniqueness
    Boedihardjo, Horatio
    Geng, Xi
    Lyons, Terry
    Yang, Danyu
    [J]. ADVANCES IN MATHEMATICS, 2016, 293 : 720 - 737
  • [5] Diehl J., 2021, AREAS AREAS GENERATE
  • [6] Invariants of Multidimensional Time Series Based on Their Iterated-Integral Signature
    Diehl, Joscha
    Reizenstein, Jeremy
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 83 - 122
  • [7] ON THE GROUPS H(PI, N) .1.
    EILENBERG, S
    MACLANE, S
    [J]. ANNALS OF MATHEMATICS, 1953, 58 (01) : 55 - 106
  • [8] NATURAL ENDOMORPHISMS OF SHUFFLE ALGEBRAS
    Foissy, Loic
    Patras, Frederic
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) : 989 - 1009
  • [9] Friz P.K., 2010, CAMBRIDGE STUDIES AD
  • [10] Friz P. K, 2014, COURSE ROUGH PATHS I