On the powers of the k-Fibonacci numbers

被引:0
作者
Falcon, Sergio [1 ,2 ]
机构
[1] Univ Las Palmas de GC, Dept Math, Las Palmas Gran Canaria, Spain
[2] Univ Las Palmas de GC, Inst Appl Microelect IUMA, Las Palmas Gran Canaria, Spain
关键词
k-Fibonacci numbers; k-Lucas numbers; Recurrence laws;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will find a combinatorial formula that relates the power of a k-Fibonacci number, F-k,n(p), to the number F-k,F-a n. From this formula and if p is odd, we will find a new formula that allows to express the k-Fibonacci number F-k,F-(2r+1)n as a combination of odd powers of F-k,F-n. If p is even, the formula is similar but for the even k-Lucas numbers L-k,L-2rn.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 7 条
[1]  
[Anonymous], 1994, FDN COMPUTER SCI
[2]  
Deutsch E, 2006, ON LINE ENCY INTEGER
[3]  
FALCON S., 2011, International Journal of Contemporary Mathematical Sciences, V6, P1039
[4]   The k-Fibonacci sequence and the Pascal 2-triangle [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :38-49
[5]   On the Fibonacci k-numbers [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 32 (05) :1615-1624
[6]   On k-Fibonacci numbers of arithmetic indexes [J].
Falcon, Sergio ;
Plaza, Angel .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) :180-185
[7]  
Spinadel V. W., 2002, INT MATH J, V2, P279