Robust centroids using fuzzy clustering with feature partitions

被引:8
作者
Alexiuk, MD [1 ]
Pizzi, NJ [1 ]
机构
[1] Natl Res Council Canada, Inst Biodiagnost, Winnipeg, MB R3B 1Y6, Canada
关键词
functional magnetic resonance imaging; fuzzy c-means; noise;
D O I
10.1016/j.patrec.2004.09.055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy c-means with feature partitions uses a generalized metric on feature subsets to increase centroid robustness. Each feature partition may use a unique metric and is weighted for relevance. This method is demonstrated on synthetic and real datasets. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1039 / 1046
页数:8
相关论文
共 15 条
[1]   Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment [J].
Baudelet, C ;
Gallez, B .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (06) :985-990
[2]   Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis [J].
Baumgartner, R ;
Windischberger, C ;
Moser, E .
MAGNETIC RESONANCE IMAGING, 1998, 16 (02) :115-125
[3]  
Bezdek J., 1999, FUZZY MODELS ALGORIT
[5]  
Brown M. A., 1995, MRI BASIC PRINCIPLES
[6]  
DUANN JR, 2001, 3 INT C IND COMP AN
[7]   A new correlation-based fuzzy logic clustering algorithm for fMRI [J].
Golay, X ;
Kollias, S ;
Stoll, G ;
Meier, D ;
Valavanis, A ;
Boesiger, P .
MAGNETIC RESONANCE IN MEDICINE, 1998, 40 (02) :249-260
[8]  
Hoppner F., 1999, FUZZY CLUSTER ANAL M
[9]   Fuzzy cluster validation index based on inter-cluster proximity [J].
Kim, DW ;
Lee, KH ;
Lee, D .
PATTERN RECOGNITION LETTERS, 2003, 24 (15) :2561-2574
[10]   Collaborative fuzzy clustering [J].
Pedrycz, W .
PATTERN RECOGNITION LETTERS, 2002, 23 (14) :1675-1686