Classification of radial solutions to equations related to Caffarelli-Kohn-Nirenberg inequalities

被引:5
作者
Villavert, John [1 ]
机构
[1] Univ Texas, Edinburg, TX 78539 USA
关键词
Asymptotic; Caffarelli-Kohn-Nirenberg inequalities; Classification of solutions; Henon-Lane-Emden equation; Liouville theorem; Hardy-Sobolev inequality; Phase plane; Radial solution; LIOUVILLE-TYPE THEOREMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SUPERLINEAR PROBLEMS; ASYMPTOTIC-BEHAVIOR; LOCAL BEHAVIOR; SINGULARITY; EXISTENCE; CONSTANT; SYMMETRY;
D O I
10.1007/s10231-019-00879-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the qualitative and quantitative properties of radial solutions to an elliptic equation related to the Euler-Lagrange equations for certain sharp Caffarelli-Kohn-Nirenberg inequalities. Namely, we examine the equation -div(vertical bar x vertical bar(a) Du) = vertical bar x vertical bar(b)u(p), u > 0, in R-N, where p > 1, N >= 2, N - 2+ a >= 0 and b > - N. The main results establish the properties of radially symmetric solutions including existence, uniqueness, and classification results as well as results on the asymptotic and intersecting behaviour of such solutions.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 41 条
[1]  
[Anonymous], 1980, NONLINEAR PARTIAL DI
[2]  
[Anonymous], 2001, T MAT I STEKLOVA
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]   Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations [J].
Bartsch, Thomas ;
Polacik, Peter ;
Quittner, Pavol .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :219-247
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[9]  
2-I
[10]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622