共 50 条
Evaluation of an AI-based, automatic coronary artery calcium scoring software
被引:50
作者:
Sandstedt, Marten
[1
,2
,3
]
Henriksson, Lilian
[1
,2
,3
]
Janzon, Magnus
[4
,5
]
Nyberg, Gusten
[1
,2
,3
]
Engvall, Jan
[1
,5
,6
]
De Geer, Jakob
[1
,2
,3
]
Alfredsson, Joakim
[4
,5
]
Persson, Anders
[1
,2
,3
]
机构:
[1] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[2] Linkoping Univ, Univ Hosp Linkoping, Dept Radiol, SE-58185 Linkoping, Sweden
[3] Linkoping Univ, Univ Hosp Linkoping, Dept Med & Hlth Sci, SE-58185 Linkoping, Sweden
[4] Linkoping Univ, Dept Cardiol, Linkoping, Sweden
[5] Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden
[6] Linkoping Univ, Dept Clin Physiol, Linkoping, Sweden
关键词:
Artificial intelligence;
Software;
Coronary artery disease;
Multidetector computed tomography;
ASSOCIATION TASK-FORCE;
COMPUTED-TOMOGRAPHY;
CARDIOVASCULAR RISK;
AMERICAN-COLLEGE;
CARDIAC CT;
GUIDELINES;
CARDIOLOGY;
SCANS;
D O I:
10.1007/s00330-019-06489-x
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Objectives To evaluate an artificial intelligence (AI)-based, automatic coronary artery calcium (CAC) scoring software, using a semi-automatic software as a reference. Methods This observational study included 315 consecutive, non-contrast-enhanced calcium scoring computed tomography (CSCT) scans. A semi-automatic and an automatic software obtained the Agatston score (AS), the volume score (VS), the mass score (MS), and the number of calcified coronary lesions. Semi-automatic and automatic analysis time were registered, including a manual double-check of the automatic results. Statistical analyses were Spearman's rank correlation coefficient (rho), intra-class correlation (ICC), Bland Altman plots, weighted kappa analysis (kappa), and Wilcoxon signed-rank test. Results The correlation and agreement for the AS, VS, and MS were rho = 0.935, 0.932, 0.934 (p < 0.001), and ICC = 0.996, 0.996, 0.991, respectively (p < 0.001). The correlation and agreement for the number of calcified lesions were rho = 0.903 and ICC = 0.977 (p < 0.001), respectively. The Bland Altman mean difference and 1.96 SD upper and lower limits of agreements for the AS, VS, and MS were - 8.2 (- 115.1 to 98.2), - 7.4 (- 93.9 to 79.1), and - 3.8 (- 33.6 to 25.9), respectively. Agreement in risk category assignment was 89.5% and kappa = 0.919 (p < 0.001). The median time for the semi-automatic and automatic method was 59 s (IQR 35-100) and 36 s (IQR 29-49), respectively (p < 0.001). Conclusions There was an excellent correlation and agreement between the automatic software and the semi-automatic software for three CAC scores and the number of calcified lesions. Risk category classification was accurate but showing an overestimation bias tendency. Also, the automatic method was less time-demanding.
引用
收藏
页码:1671 / 1678
页数:8
相关论文
共 50 条