Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA

被引:415
作者
Parikh, SS
Mol, CD
Slupphaug, G
Bharati, S
Krokan, HE
Tainer, JA
机构
[1] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Norwegian Univ Sci & Technol, Ctr Mol Biol, UNIGEN, N-7005 Trondheim, Norway
关键词
abasic sites; crystal structure; DNA repair; protein-DNA interactions;
D O I
10.1093/emboj/17.17.5214
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three high-resolution crystal structures of DNA complexes with wild-type and mutant human uracil-DNA glycosylase (UDG), coupled kinetic characterizations and comparisons with the refined unbound UDG structure help resolve fundamental issues in the initiation of DNA base excision repair (BER): damage detection, nucleotide flipping versus extrahelical nucleotide capture, avoidance of apurinic/apyrimidinic (AP) site toxicity and coupling of damage-specific and damage-general BER steps. Structural and kinetic results suggest that UDG binds, kinks and compresses the DNA backbone with a 'Ser-Pro pinch' and scans the minor groove for damage. Concerted shifts in UDG simultaneously form the catalytically competent active site and induce further compression and kinking of the double-stranded DNA backbone only at uracil and AP sites, where these nucleotides can flip at the phosphate-sugar junction into a complementary specificity pocket. Unexpectedly, UDG binds to AP sites more tightly and more rapidly than to uracil-containing DNA, and thus may protect cells sterically from AP site toxicity. Furthermore, AP-endonuclease, which catalyzes the first damage-general step of BER, enhances UDG activity, most likely by inducing UDG release via shared minor groove contacts and flipped AP site binding. Thus, AP site binding may couple damage-specific and damage-general steps of BER without requiring direct protein-protein interactions.
引用
收藏
页码:5214 / 5226
页数:13
相关论文
共 49 条
[1]   Crystal structure of a G:T/U mismatch-specific DNA glycosylase:: Mismatch recognition by complementary-strand interactions [J].
Barrett, TE ;
Savva, R ;
Panayotou, G ;
Barlow, T ;
Brown, T ;
Jiricny, J ;
Pearl, LH .
CELL, 1998, 92 (01) :117-129
[2]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[3]  
BRASH DE, 1981, DNA REPAIR LABORATOR, V3, P327
[4]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[5]   Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells [J].
Caldecott, KW ;
Tucker, JD ;
Stanker, LH ;
Thompson, LH .
NUCLEIC ACIDS RESEARCH, 1995, 23 (23) :4836-4843
[6]  
CHEE MS, 1990, CURR TOP MICROBIOL, V154, P125
[7]   Finding a basis for flipping bases [J].
Cheng, XD ;
Blumenthal, RM .
STRUCTURE, 1996, 4 (06) :639-645
[8]   PURIFICATION AND PROPERTIES OF MITOCHONDRIAL URACIL-DNA GLYCOSYLASE FROM RAT-LIVER [J].
DOMENA, JD ;
TIMMER, RT ;
DICHARRY, SA ;
MOSBAUGH, DW .
BIOCHEMISTRY, 1988, 27 (18) :6742-6751
[9]   ACCURATE BOND AND ANGLE PARAMETERS FOR X-RAY PROTEIN-STRUCTURE REFINEMENT [J].
ENGH, RA ;
HUBER, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :392-400
[10]   THE COMPLETE DNA-SEQUENCE OF VACCINIA VIRUS [J].
GOEBEL, SJ ;
JOHNSON, GP ;
PERKUS, ME ;
DAVIS, SW ;
WINSLOW, JP ;
PAOLETTI, E .
VIROLOGY, 1990, 179 (01) :247-266