Na3V2(PO4)3@NC composite derived from polyaniline as cathode material for high-rate and ultralong-life sodium-ion batteries

被引:41
作者
Zhu, Limin [1 ,3 ]
Sun, Qiancheng [1 ,3 ]
Xie, Lingling [2 ,3 ]
Cao, Xiaoyu [1 ,3 ]
机构
[1] Henan Univ Technol, Sch Chem & Chem Engn, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Sch Environm Engn, Zhengzhou, Peoples R China
[3] Henan Univ Technol, Key Lab High Specif Energy Mat Electrochem Power, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
cathode materials; Na3V2(PO4)(3); N-doped carbon layer; polyaniline; sodium-ion batteries; HIGH-PERFORMANCE CATHODE; CARBON-COATED NA3V2(PO4)(3); N-DOPED CARBON; LONG-LIFE; ELECTRODE MATERIAL; HIGH-CAPACITY; LOW-COST; STABILITY; FRAMEWORK; GRAPHENE;
D O I
10.1002/er.5239
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polyaniline-derived N-doped carbon-composited Na3V2(PO4)(3) (NVP@NC) are synthesized by a rheological phase reaction followed by calcination. The NVP@NC composite displays improved cycling and rate properties. Its discharge capacity remains 118.7 mAh g(-1) at the 400th cycle at 0.3 C. It also obtains invertible capacities of 93.7 and 91.1 mAh g(-1) at 5 and 10 C after 1000 cycles, with capacity retention rates of 92.7% and 98.4%, respectively. These enhanced results due to the N-doped carbon layer (NC), which restrains the expansion and deformation of the crystal structure, reduce the transport length of sodium ion and electrons and improves the electroconductibility of NVP.
引用
收藏
页码:4586 / 4594
页数:9
相关论文
共 50 条
  • [41] Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries
    Aragon, M. J.
    Lavela, P.
    Alcantara, R.
    Tirado, J. L.
    ELECTROCHIMICA ACTA, 2015, 180 : 824 - 830
  • [42] 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3V2(PO4)3@Carbon Paper Cathode for Sodium-Ion Batteries
    Kretschmer, Katja
    Sun, Bing
    Zhang, Jinqiang
    Xie, Xiuqiang
    Liu, Hao
    Wang, Guoxiu
    SMALL, 2017, 13 (09)
  • [43] Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries
    Huang, Hong-bo
    Luo, Shao-hua
    Liu, Cai-ling
    Yang, Yue
    Zhai, Yu-chun
    Chang, Long-jiao
    Li, Ming-qi
    APPLIED SURFACE SCIENCE, 2019, 487 : 1159 - 1166
  • [44] High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries
    Zheng, Li -Li
    Xue, Yuan
    Liu, Bao-Sheng
    Zhou, Yu-Xiang
    Hao, Su-E
    Wang, Zhen-bo
    CERAMICS INTERNATIONAL, 2017, 43 (06) : 4950 - 4956
  • [45] Ultrafine Na3V2(PO4)3@C nanoparticles embedded in boron-doped graphene as high-rate and long cycle-life cathode material for sodium-ion batteries
    Zeng, Qin
    Luo, Ligang
    Yu, Zhihao
    Jiang, Linhua
    SOLID STATE IONICS, 2018, 323 : 92 - 96
  • [46] One-Step Synthesis of 3D-Sandwiched Na3V2(PO4)2O2F@rGO Composites as Cathode Material for High-Rate Sodium-Ion Batteries
    Chen, Hao
    Mi, Hongwei
    Sun, Lingna
    Zhang, Peixin
    Li, Yongliang
    CHEMELECTROCHEM, 2018, 5 (18): : 2593 - 2599
  • [47] Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries
    Zhang, Ludan
    Huang, Tao
    Yu, Aishui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 : 522 - 527
  • [48] Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone
    Zhu, Weikai
    Liang, Kang
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17192 - 17201
  • [49] Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries
    Aragon, Maria J.
    Lavela, Pedro
    Ortiz, Gregorio F.
    Tirado, Jose L.
    CHEMELECTROCHEM, 2015, 2 (07): : 995 - 1002
  • [50] Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries
    Li, Hui
    Bai, Ying
    Wu, Feng
    Ni, Qiao
    Wu, Chuan
    SOLID STATE IONICS, 2015, 278 : 281 - 286