Remote modulation doping in van der Waals heterostructure transistors

被引:102
作者
Lee, Donghun [1 ]
Lee, Jea Jung [2 ]
Kim, Yoon Seok [1 ]
Kim, Yeon Ho [1 ]
Kim, Jong Chan [3 ]
Huh, Woong [1 ]
Lee, Jaeho [1 ]
Park, Sungmin [1 ]
Jeong, Hu Young [4 ]
Kim, Young Duck [2 ,5 ,6 ]
Lee, Chul-Ho [1 ,7 ,8 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul, South Korea
[2] Kyung Hee Univ, Dept Phys, Seoul, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, UNIST Cent Res Facil UCRF, Ulsan, South Korea
[5] Kyung Hee Univ, Dept Informat Display, Seoul, South Korea
[6] Kyung Hee Univ, KHU KIST Dept Converging Sci & Technol, Seoul, South Korea
[7] Korea Univ, Dept Integrat Energy Engn, Seoul, South Korea
[8] Korea Inst Sci & Technol, Adv Mat Res Div, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
CARRIER TRANSPORT; MONOLAYER MOS2; MOBILITY; GRAPHENE; HOLE; POLARIZATION; TRANSITION; CONTACTS; BARRIER; SURFACE;
D O I
10.1038/s41928-021-00641-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Carriers in a molybdenum disulfide transistor can be modulated without decreasing mobility by remote doping and charge transfer through a van der Waals heterostructure, which avoids dopant-induced impurity scattering in the channel. Doping is required to modulate the electrical properties of semiconductors but introduces impurities that lead to Coulomb scattering, which hampers charge transport. Such scattering is a particular issue in two-dimensional semiconductors because charged impurities are in close proximity to the atomically thin channel. Here we report the remote modulation doping of a two-dimensional transistor that consists of a band-modulated tungsten diselenide/hexagonal boron nitride/molybdenum disulfide heterostructure. The underlying molybdenum disulfide channel is remotely doped via controlled charge transfer from dopants on the tungsten diselenide surface. The modulation-doped device exhibits two-dimensional-confined charge transport and the suppression of impurity scattering, shown by increasing mobility with decreasing temperature. Our molybdenum disulfide modulation-doped field-effect transistors exhibit a room-temperature mobility of 60 cm(2) V-1 s(-)(1); in comparison, transistors that have been directly doped exhibit a mobility of 35 cm(2) V-1 s(-)(1).
引用
收藏
页码:664 / 670
页数:7
相关论文
共 50 条
[1]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[2]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[3]   Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers [J].
Britnell, Liam ;
Gorbachev, Roman V. ;
Jalil, Rashid ;
Belle, Branson D. ;
Schedin, Fred ;
Katsnelson, Mikhail I. ;
Eaves, Laurence ;
Morozov, Sergey V. ;
Mayorov, Alexander S. ;
Peres, Nuno M. R. ;
Castro Neto, Antonio H. ;
Leist, Jon ;
Geim, Andre K. ;
Ponomarenko, Leonid A. ;
Novoselov, Kostya S. .
NANO LETTERS, 2012, 12 (03) :1707-1710
[4]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[5]  
Chen YZ, 2015, NAT MATER, V14, P801, DOI [10.1038/nmat4303, 10.1038/NMAT4303]
[6]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[7]  
Cui X, 2015, NAT NANOTECHNOL, V10, P534, DOI [10.1038/NNANO.2015.70, 10.1038/nnano.2015.70]
[8]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[9]  
Dillen DC, 2014, NAT NANOTECHNOL, V9, P116, DOI [10.1038/nnano.2013.301, 10.1038/NNANO.2013.301]
[10]   ELECTRON MOBILITIES IN MODULATION-DOPED SEMICONDUCTOR HETEROJUNCTION SUPER-LATTICES [J].
DINGLE, R ;
STORMER, HL ;
GOSSARD, AC ;
WIEGMANN, W .
APPLIED PHYSICS LETTERS, 1978, 33 (07) :665-667