The equation n(n+d) ... (n+(k+1)d) = by2 with ω(d) ≤ 6 or d ≤ 1010

被引:13
|
作者
Laishram, Shanta [1 ]
Shorey, T. N. [1 ]
机构
[1] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
关键词
diophantine equations; arithmetic progressions; squares; Legendre symbol; squarefree integers; congruences;
D O I
10.4064/aa129-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:249 / 305
页数:57
相关论文
共 31 条
  • [11] PROOFS OF SOME CONJECTURES OF SUN ON THE RELATIONS BETWEEN T(a, b, c, d; n) AND N(a, b, c, d; n)
    Cao, Liping
    Lin, Bernard L. S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (03) : 829 - 842
  • [12] Proofs of some conjectures of Sun on the relations between N(a, b, c, d; n) and t(a, b, c, d; n)
    Xia, Ernest X. W.
    Zhong, Z. X.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 1 - 18
  • [13] Proofs of conjectures of Chan for d(n)
    Cui, Su-Ping
    RAMANUJAN JOURNAL, 2023, 60 (01) : 287 - 294
  • [14] On the largest element in D(n)-quadruples
    Dujella, Andrej
    Petricevic, Vinko
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (06): : 1079 - 1086
  • [15] HILBERT'S TENTH PROBLEM FOR FIXED d AND n
    Gasarch, William
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2021, (133): : 26 - 41
  • [16] On the equation 1!k + 2!k + ⋯ + n!k = x2
    Luca F.
    Periodica Mathematica Hungarica, 2002, 44 (2) : 219 - 224
  • [17] On the number of solutions of the generalized Ramanujan-Nagell equation D1x2 + D2m = pn
    Hu, Yongzhong
    Le, Maohua
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (03): : 279 - 293
  • [18] On the equation x2 + dy6 = zp for square-free 1=d=20
    Madriaga, Franco Golfieri
    Pacetti, Ariel
    Torcomian, Lucas Villagra
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (05) : 1129 - 1165
  • [19] On the Diophantine equation (x2 ± C)(y2 ± D) = z4
    Yuan, Pingzhi
    Luo, Jiagui
    ACTA ARITHMETICA, 2010, 144 (01) : 69 - 95
  • [20] On the Brocard–Ramanujan Diophantine Equation n! + 1 = m2
    Bruce C. Berndt
    William F. Galway
    The Ramanujan Journal, 2000, 4 : 41 - 42