The equation n(n+d) ... (n+(k+1)d) = by2 with ω(d) ≤ 6 or d ≤ 1010

被引:13
|
作者
Laishram, Shanta [1 ]
Shorey, T. N. [1 ]
机构
[1] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
关键词
diophantine equations; arithmetic progressions; squares; Legendre symbol; squarefree integers; congruences;
D O I
10.4064/aa129-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:249 / 305
页数:57
相关论文
共 31 条
  • [1] On the equation n(n+d)•••(n+(i0-1)d)(n+(i0+1)d)•••(n+(k-1)d)=yl with 0<i0<k-1
    Saradha, N.
    Shorey, T. N.
    ACTA ARITHMETICA, 2007, 129 (01) : 1 - 21
  • [2] SOLVING n(n plus d) . . . (n plus (k-1)d) = by2 WITH P(b) ≤ Ck
    Filaseta, M.
    Laishram, S.
    Saradha, N.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) : 161 - 173
  • [3] New notes on the equation d(n) = d(φ(n)) and the inequality d(n) > d(φ(n))
    Bellaouar, Djamel
    Togbe, Alain
    Jakimczuk, Rafael
    MATHEMATICA SLOVACA, 2024, 74 (05) : 1127 - 1146
  • [4] A class of solutions of the equation d (n2) = d (φ (n))
    Amroune, Zahra
    Bellaouar, Djamel
    Boudaoud, Abdelmadjid
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 284 - 309
  • [5] Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
    Bellaouar, Djamel
    Boudaoud, Abdelmadjid
    Jakimczuk, Rafael
    MATHEMATICA SLOVACA, 2023, 73 (03) : 613 - 632
  • [6] A Recurrence Formula for D Numbers D2n(2n-1)
    Liu, Guodong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [7] Solutions of d (n) = d (φ (n)) where n has four different prime divisors
    Slimane, Bouhadjar
    Djamel, Bellaouar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [8] The relations between N(a, b, c, d; n) and t(a, b, c, d; n) and (p, k)-parametrization of theta functions
    Yao, Olivia X. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 125 - 143
  • [9] Some relations between t(a, b, c, d; n) and N(a, b, c, d; n)
    Sun, Zhi-Hong
    ACTA ARITHMETICA, 2016, 175 (03) : 269 - 289
  • [10] ON NONEXISTENCE OF D(n)-QUADRUPLES
    Franusic, Zrinka
    Jurasic, Ana
    MATHEMATICA SLOVACA, 2024, 74 (04) : 835 - 844