NECESSARY AND SUFFICIENT CONDITIONS FOR UNIT GRAPHS TO BE HAMILTONIAN

被引:35
|
作者
Maimani, H. R. [1 ,2 ]
Pournaki, M. R. [3 ]
Yassemi, S. [2 ,4 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Math Sect, Dept Basic Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[4] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
Hamiltonian cycle; Hamiltonian graph; finite ring; RINGS;
D O I
10.2140/pjm.2011.249.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The unit graph corresponding to an associative ring R is the graph obtained by setting all the elements of R to be the vertices and defining distinct vertices x and y to be adjacent if and only if x + y is a unit of R. By a constructive method, we derive necessary and sufficient conditions for unit graphs to be Hamiltonian.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 50 条
  • [41] On k-ordered Hamiltonian graphs
    Kierstead, HA
    Sárközy, GN
    Selkow, SM
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 17 - 25
  • [42] Hamiltonian properties of triangular grid graphs
    Gordon, Valery S.
    Orlovich, Yury L.
    Werner, Frank
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6166 - 6188
  • [43] On Finding Hamiltonian Cycles in Barnette Graphs
    Bagheri, Behrooz Gh
    Fleischner, Herbert
    Feder, Tomas
    Subi, Carlos
    FUNDAMENTA INFORMATICAE, 2022, 188 (01) : 1 - 14
  • [44] On the Extremal Number of Edges in Hamiltonian Graphs
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, D. Frank
    Hsu, Lih-Hsing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2011, 27 (05) : 1659 - 1665
  • [45] On the Cycle Spectrum of Cubic Hamiltonian Graphs
    Janina Müttel
    Dieter Rautenbach
    Friedrich Regen
    Thomas Sasse
    Graphs and Combinatorics, 2013, 29 : 1067 - 1076
  • [46] Hamiltonian Cycles in T-Graphs
    J. R. Reay
    T. Zamfirescu
    Discrete & Computational Geometry, 2000, 24 : 497 - 502
  • [47] COUNTING HAMILTONIAN CYCLES IN BIPARTITE GRAPHS
    Haanpaa, Harri
    Ostergard, Patric R. J.
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 979 - 995
  • [48] On s-Hamiltonian Line Graphs
    Lai, Hong-Jian
    Shao, Yehong
    JOURNAL OF GRAPH THEORY, 2013, 74 (03) : 344 - 358
  • [49] Finding large cycles in Hamiltonian graphs
    Feder, Tomas
    Motwani, Rajeev
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (08) : 882 - 893
  • [50] Hamiltonian Connectedness in Directed Toeplitz Graphs
    Malik, Shabnam
    Zamfirescu, Tudor
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2010, 53 (02): : 145 - 156