NECESSARY AND SUFFICIENT CONDITIONS FOR UNIT GRAPHS TO BE HAMILTONIAN

被引:35
|
作者
Maimani, H. R. [1 ,2 ]
Pournaki, M. R. [3 ]
Yassemi, S. [2 ,4 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Math Sect, Dept Basic Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[4] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
Hamiltonian cycle; Hamiltonian graph; finite ring; RINGS;
D O I
10.2140/pjm.2011.249.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The unit graph corresponding to an associative ring R is the graph obtained by setting all the elements of R to be the vertices and defining distinct vertices x and y to be adjacent if and only if x + y is a unit of R. By a constructive method, we derive necessary and sufficient conditions for unit graphs to be Hamiltonian.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 50 条
  • [21] On degree conditions of semi-balanced k-partite Hamiltonian graphs
    Yokomura, Kuniharu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (08)
  • [22] A new sufficient condition for a digraph to be Hamiltonian
    Bang-Jensen, J
    Guo, YB
    Yeo, A
    DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) : 61 - 72
  • [23] New sufficient condition and Hamiltonian and traceable
    Zhao, Kewen
    Li, Zu
    Chen, Deqin
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (06): : 597 - 602
  • [24] SUFFICIENT CONDITIONS FOR CERTAIN STRUCTURAL PROPERTIES OF GRAPHS BASED ON WIENER-TYPE INDICES
    Deng, Hanyuan
    Kuang, Meijun
    Wu, Renfang
    Huang, Guihua
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 11 (02) : 9 - 18
  • [25] On Hamiltonian paths in distance graphs
    Loewenstein, Christian
    Rautenbach, Dieter
    Regen, Friedrich
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1075 - 1079
  • [26] HAMILTONIAN NORMAL CAYLEY GRAPHS
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) : 731 - 740
  • [27] HAMILTONIAN PROPERTIES OF GRID GRAPHS
    ZAMFIRESCU, C
    ZAMFIRESCU, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 564 - 570
  • [28] Connectivity and Hamiltonian Connectedness of Graphs
    朱永津
    王中兴
    Chinese Science Bulletin, 1993, (01) : 15 - 18
  • [29] Exploration of Faulty Hamiltonian Graphs
    Caissy, David
    Pelc, Andrzej
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (07) : 809 - 827
  • [30] Hamiltonian properties of Toeplitz graphs
    vanDal, R
    Tijssen, G
    Tuza, Z
    vanderVeen, JAA
    Zamfirescu, C
    Zamfirescu, T
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 69 - 81