NECESSARY AND SUFFICIENT CONDITIONS FOR UNIT GRAPHS TO BE HAMILTONIAN

被引:38
作者
Maimani, H. R. [1 ,2 ]
Pournaki, M. R. [3 ]
Yassemi, S. [2 ,4 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Math Sect, Dept Basic Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[4] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
Hamiltonian cycle; Hamiltonian graph; finite ring; RINGS;
D O I
10.2140/pjm.2011.249.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The unit graph corresponding to an associative ring R is the graph obtained by setting all the elements of R to be the vertices and defining distinct vertices x and y to be adjacent if and only if x + y is a unit of R. By a constructive method, we derive necessary and sufficient conditions for unit graphs to be Hamiltonian.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[3]   UNIT GRAPHS ASSOCIATED WITH RINGS [J].
Ashrafi, N. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2851-2871
[4]  
Ashrafi N., 2005, Q J MATH, V56, P1, DOI [10.1093/qmath/hah023, DOI 10.1093/QMATH/HAH023]
[5]  
ATIYAH MF, 1969, INTRO COMMUTATIVE GE
[6]  
Chartrand G, 1993, Applied and Algorithmic Graph Theory
[7]  
Goldsmith B, 1998, Q J MATH, V49, P331
[8]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52
[9]  
GRIMALDI RP, 1990, P 20 SE C COMB GRAPH, V71, P95
[10]   WEAKLY PERFECT GRAPHS ARISING FROM RINGS [J].
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :417-425