On some equations in prime rings

被引:19
|
作者
Fosner, Maja
Vukman, Joso
机构
[1] Univ Maribor, Fac Logist, Celje 3000, Slovenia
[2] Univ Maribor, Fac Sci & Math, Dept Math & Comp Sci, SI-2000 Maribor, Slovenia
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 152卷 / 02期
关键词
prime ring; semiprime ring; functional identity; derivation; Jordan derivation; involution; bicircular projection;
D O I
10.1007/s00605-007-0464-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove the following result. Let R be a prime ring of characteristic different from two and let T : R -> R be an additive mapping satisfying the relation T(x(3)) = T(x)x(2) - xT(x)x + x(2) T(x) for all x is an element of R. In this case T is of the form 4T(x) = qx + xq, where q is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible to solve some functional equations in prime rings with involution which are related to bicircular projections.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 50 条
  • [1] ON SOME FUNCTIONAL EQUATIONS IN RINGS
    Fosner, Maja
    Vukman, Joso
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2647 - 2658
  • [2] ON SOME FUNCTIONAL EQUATIONS ARISING FROM (m, n)-JORDAN DERIVATIONS AND COMMUTATIVITY OF PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (04) : 1153 - 1168
  • [3] EQUATIONS RELATED TO DERIVATIONS ON PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    GLASNIK MATEMATICKI, 2011, 46 (01) : 31 - 41
  • [4] On some functional equation arising from (m, n)-Jordan derivations of prime rings
    Fosner, Maja
    Marcen, Benjamin
    Vukman, Joso
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 133 - 146
  • [5] A RESULT CONCERNING DERIVATIONS IN PRIME RINGS
    Fosner, Maja
    Persin, Nina
    GLASNIK MATEMATICKI, 2013, 48 (01) : 67 - 79
  • [6] On a functional equation related to derivations in prime rings
    Fosner, Maja
    Persin, Nina
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (02): : 189 - 203
  • [7] On a functional equation related to derivations in prime rings
    Maja Fošner
    Nina Peršin
    Monatshefte für Mathematik, 2012, 167 : 189 - 203
  • [8] Structure of some additive maps in prime rings with involution
    Mohammad Aslam Siddeeque
    Abbas Hussain Shikeh
    Raof Ahmad Bhat
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)
  • [9] On a Functional Equation Related to Jordan Triple Derivations in Prime Rings
    Fosner, M.
    Marcen, B.
    Vukman, J.
    MATHEMATICAL NOTES, 2018, 103 (5-6) : 820 - 831
  • [10] On a Functional Equation Related to Jordan Triple Derivations in Prime Rings
    M. Fošner
    B. Marcen
    J. Vukman
    Mathematical Notes, 2018, 103 : 820 - 831