Magnetic correlations in the two-dimensional repulsive Fermi-Hubbard model

被引:13
|
作者
Simkovic, Fedor [1 ]
Deng, Youjin [2 ,3 ]
Prokof'ev, N. V. [4 ,5 ]
Svistunov, B. V. [4 ,5 ]
Tupitsyn, I. S. [4 ,5 ]
Kozik, Evgeny [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[5] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
MOTT INSULATOR; GROUND-STATE; ANTIFERROMAGNETISM; FERROMAGNETISM; INSTABILITIES; TEMPERATURE; NARROW; PHASES; ATOMS;
D O I
10.1103/PhysRevB.96.081117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The repulsive Fermi-Hubbard model on a square lattice has a rich phase diagram near half-filling (n = 1): at n = 1 the ground state is an antiferromagnetic insulator, at 0.6 < n less than or similar to 0.8 the ground state is a d(x2-y2)-wave superfluid (at least for moderately strong interactions, U less than or similar to 4), and the region 1 - n << 1 is likely subject to phase separation. Much less is known about the nature of strong magnetic fluctuations at finite temperature and how they change with the doping level. Recent experiments on ultracold atoms have now reached this interesting fluctuation regime. In this work we employ the skeleton diagrammatic method to quantify the characteristic temperature scale T-M (n) for the onset of magnetic fluctuations with a large correlation length.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Two-dimensional Bose-Hubbard model for helium on graphene
    Yu, Jiangyong
    Lauricella, Ethan
    Elsayed, Mohamed
    Shepherd, Kenneth
    Nichols, Nathan S.
    Lombardi, Todd
    Kim, Sang Wook
    Wexler, Carlos
    Vanegas, Juan M.
    Lakoba, Taras
    Kotov, Valeri N.
    Del Maestro, Adrian
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [42] Nonequilibrium variational-cluster approach to real-time dynamics in the Fermi-Hubbard model
    Hofmann, Felix
    Eckstein, Martin
    Potthoff, Michael
    PROGRESS IN NON-EQUILIBRIUM GREEN'S FUNCTIONS (PNGF VI), 2016, 696
  • [43] Mott Transition in the Two-Dimensional Hubbard Model
    Kohno, Masanori
    PHYSICAL REVIEW LETTERS, 2012, 108 (07)
  • [44] Thermodynamics and magnetism in the two-dimensional to three-dimensional crossover of the Hubbard model
    Ibarra-Garcia-Padilla, Eduardo
    Mukherjee, Rick
    Hulet, Randall G.
    Hazzard, Kaden R. A.
    Paiva, Thereza
    Scalettar, Richard T.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [45] Doping and temperature evolution of pseudogap and spin-spin correlations in the two-dimensional Hubbard model
    Kuz'min, V., I
    Visotin, M. A.
    Nikolaev, S., V
    Ovchinnikov, S. G.
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [46] Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
    Hensgens, T.
    Fujita, T.
    Janssen, L.
    Li, Xiao
    Van Diepen, C. J.
    Reichl, C.
    Wegscheider, W.
    Das Sarma, S.
    Vandersypen, L. M. K.
    NATURE, 2017, 548 (7665) : 70 - +
  • [47] Entanglement and Classical Correlations at the Doping-Driven Mott Transition in the Two-Dimensional Hubbard Model
    Walsh, C.
    Semon, P.
    Poulin, D.
    Sordi, G.
    Tremblay, A-M S.
    PRX QUANTUM, 2020, 1 (02):
  • [48] Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model
    Cook, Matthew W.
    Clark, Stephen R.
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [49] Two-dimensional attractive Hubbard model and the BCS-BEC crossover
    Fontenele, Rodrigo A.
    Costa, Natanael C.
    dos Santos, Raimundo R.
    Paiva, Thereza
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [50] Ferromagnetism and triplet superconductivity in the two-dimensional Hubbard model
    Honerkamp, C
    Salmhofer, M
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 408 : 302 - 304