Magnetic correlations in the two-dimensional repulsive Fermi-Hubbard model

被引:13
|
作者
Simkovic, Fedor [1 ]
Deng, Youjin [2 ,3 ]
Prokof'ev, N. V. [4 ,5 ]
Svistunov, B. V. [4 ,5 ]
Tupitsyn, I. S. [4 ,5 ]
Kozik, Evgeny [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[5] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
MOTT INSULATOR; GROUND-STATE; ANTIFERROMAGNETISM; FERROMAGNETISM; INSTABILITIES; TEMPERATURE; NARROW; PHASES; ATOMS;
D O I
10.1103/PhysRevB.96.081117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The repulsive Fermi-Hubbard model on a square lattice has a rich phase diagram near half-filling (n = 1): at n = 1 the ground state is an antiferromagnetic insulator, at 0.6 < n less than or similar to 0.8 the ground state is a d(x2-y2)-wave superfluid (at least for moderately strong interactions, U less than or similar to 4), and the region 1 - n << 1 is likely subject to phase separation. Much less is known about the nature of strong magnetic fluctuations at finite temperature and how they change with the doping level. Recent experiments on ultracold atoms have now reached this interesting fluctuation regime. In this work we employ the skeleton diagrammatic method to quantify the characteristic temperature scale T-M (n) for the onset of magnetic fluctuations with a large correlation length.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Dynamical quasicondensation in the weakly interacting Fermi-Hubbard model
    Brezinova, Iva
    Stimpfle, Markus
    Donsa, Stefan
    Rubio, Angel
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [22] Hopping Modulation in a One-Dimensional Fermi-Hubbard Hamiltonian
    Massel, Francesco
    Leskinen, Mikko J.
    Torma, Paivi
    PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [23] Equation of State of the Two-Dimensional Hubbard Model
    Cocchi, Eugenio
    Miller, Luke A.
    Drewes, Jan H.
    Koschorreck, Marco
    Pertot, Daniel
    Brennecke, Ferdinand
    Koehl, Michael
    PHYSICAL REVIEW LETTERS, 2016, 116 (17)
  • [24] Partial bosonization for the two-dimensional Hubbard model
    Denz, Tobias
    Mitter, Mario
    Pawlowski, Jan M.
    Wetterich, Christof
    Yamada, Masatoshi
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [25] Universal pairing-gap measurement proposal by dynamical excitations in a two-dimensional doped attractive Fermi-Hubbard model with spin-orbit coupling
    Zhao, Huaisong
    Han, Rui
    Qin, Ling
    Yuan, Feng
    Zou, Peng
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [26] Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs
    Rubtsov, A. N.
    Katsnelson, M. I.
    Lichtenstein, A. I.
    Georges, A.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [27] Equation of state of the fermionic two-dimensional Hubbard model
    LeBlanc, J. P. F.
    Gull, Emanuel
    PHYSICAL REVIEW B, 2013, 88 (15)
  • [28] Incommensurate antiferromagnetic fluctuations in the two-dimensional Hubbard model
    Krahl, H. C.
    Friederich, S.
    Wetterich, C.
    PHYSICAL REVIEW B, 2009, 80 (01)
  • [29] Multiple particle-hole pair creation in the harmonically driven Fermi-Hubbard model
    ten Brinke, Nicolai
    Ligges, Manuel
    Bovensiepen, Uwe
    Schuetzhold, Ralf
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [30] Equation of State and Thermometry of the 2D SU(N) Fermi-Hubbard Model
    Pasqualetti, G.
    Bettermann, O.
    Oppong, N. Darkwah
    Ibarra-Garcia-Padilla, E.
    Dasgupta, S.
    Scalettar, R. T.
    Hazzard, K. R. A.
    Bloch, I.
    Foelling, S.
    PHYSICAL REVIEW LETTERS, 2024, 132 (08)