Confining invasion directions of Li+ to achieve efficient Si anode material for lithium-ion batteries

被引:59
作者
Zhang, Ziqi [1 ,2 ]
Wang, Huiqiong [1 ,2 ]
Cheng, Meijuan [1 ,2 ]
He, Yang [4 ]
Han, Xiang [5 ]
Luo, Linshan [1 ,2 ]
Su, Pengfei [1 ,2 ]
Huang, Wei [1 ,2 ]
Wang, Jianyuan [1 ,2 ]
Li, Cheng [1 ,2 ]
Zhu, Zizhong [1 ,2 ]
Zhang, Qiaobao [3 ]
Chen, Songyan [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Jiujiang Res Inst, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[4] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[5] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion batteries; High specific energy; Silicon anode; Crystal orientation; Silicon nano-ribbon; TOTAL-ENERGY CALCULATIONS; HIGH-CAPACITY; SILICON NANOWIRES; PERFORMANCE; ELECTRODES; NANOPARTICLES; FRACTURE; NANOPILLARS; LITHIATION; EVOLUTION;
D O I
10.1016/j.ensm.2021.07.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tremendous volume expansion of silicon anode during cycling limits its further application. Here, a novel silicon nano-ribbon (SiNR) with (110) crystal plane is proposed as anode for the Lithium-ion batteries. The SiNRs with (110) crystal plane have been synthesized by a simple electrochemical micromachining method. Both invasion direction of the lithium-ions and expansion directions of the lithiated silicon are limited to the < 110 > crystal direction. Recrystallization of SiNR induced by the retention of silicon atomic chains after delithiation is verified experimentally and theoretically. Such SiNR, without necessary surface coating treatment, exhibits high ionic conductivity, high stable solid electrolyte interphase (SEI) and long cycling stability, retaining a specific capacity of 1721.3 mAh g(-1) (similar to 80% capacity retention) after 2000 cycles with an initial coulombic efficiency (CE) of 83%. The rational design of nanostructured battery materials and electrodes in this work also opens a new dimension in material design for other batteries.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 65 条
[1]  
[Anonymous], 2014, NAT COMMUN
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries [J].
Chen, L. B. ;
Xie, J. Y. ;
Yu, H. C. ;
Wang, T. H. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (08) :1157-1162
[7]  
Chen S.Y, 2020, J POWER SOURCES, P450
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[10]  
Chon M.J., 2011, Phys Rev Lett, P107