Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures

被引:13
作者
Zhao, Xixia [1 ,2 ]
Di, Qian [1 ,2 ]
Wu, Xiaotong [1 ]
Liu, Yubin [1 ]
Yu, Yikang [1 ]
Wei, Guijuan [2 ]
Zhang, Jun [2 ]
Quan, Zewei [1 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[2] China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; OXYGEN REDUCTION; SN; NANOPARTICLES; PERFORMANCE; EVOLUTION; CATALYSTS; NANORODS; ANODES; LAYERS;
D O I
10.1039/c7cc06729a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a mild synthetic method to access Sn nanocrystals with tunable diameter and narrow size distribution (6-8%). The self-templated formation of various types of Sn chalcogenide hollow nanostructures including oxides, sulfides, selenides, and tellurides is also demonstrated for the first time. The use of air-stable tungsten hexacarbonyl that produces carbon monoxide at elevated temperature to reduce the SnCl2 precursor and coordinate the nanoparticle surface is thought to play an essential role in this method. This synthesis method is likely to be extended to other metal systems and could find potential applications including battery anodes and catalysts.
引用
收藏
页码:11001 / 11004
页数:4
相关论文
共 48 条
[1]   Theoretical study of tungsten carbonyl complexes W(CO)(n)(+) (n=1-6): Structures, binding energies, and implications for gas phase reactivities [J].
Buker, HH ;
Maitre, P ;
Ohanessian, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (21) :3966-3976
[2]   SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Chen, Yuan Ting ;
Jayaprakash, N. ;
Madhavi, Srinivasan ;
Yang, Yan Hui ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20504-20508
[3]   Excitation-Intensity-Dependent Color-Tunable Dual Emissions from Manganese-Doped CdS/ZnS Core/Shell Nanocrystals [J].
Chen, Ou ;
Shelby, Daniel E. ;
Yang, Yongan ;
Zhuang, Jiaqi ;
Wang, Tie ;
Niu, Chenggang ;
Omenetto, Nicolo ;
Cao, Y. Charles .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (52) :10132-10135
[4]   A library of single-crystal metal-tin nanorods: Using diffusion as a tool for controlling the morphology of intermetallic nanocrystals [J].
Chou, Nam Hawn ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2008, 20 (06) :2081-2085
[5]   Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations [J].
Corma, A ;
Nemeth, LT ;
Renz, M ;
Valencia, S .
NATURE, 2001, 412 (6845) :423-425
[6]   Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge[N(SiMe3)2]2 [J].
Gerung, H ;
Bunge, SD ;
Boyle, TJ ;
Brinker, CJ ;
Han, SM .
CHEMICAL COMMUNICATIONS, 2005, (14) :1914-1916
[7]   Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity [J].
He, Dong Sheng ;
He, Daping ;
Wang, Jing ;
Lin, Yue ;
Yin, Peiqun ;
Hong, Xun ;
Wu, Yuen ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (05) :1494-1497
[8]   A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys) via in Situ Formed Metal Long-Chain Amides [J].
He, Meng ;
Protesescu, Loredana ;
Caputo, Riccarda ;
Krumeich, Frank ;
Kovalenko, Maksym V. .
CHEMISTRY OF MATERIALS, 2015, 27 (02) :635-647
[9]   Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons [J].
Huber, GW ;
Shabaker, JW ;
Dumesic, JA .
SCIENCE, 2003, 300 (5628) :2075-2077
[10]   Phase Evolution of Tin Nanocrystals in Lithium Ion Batteries [J].
Im, Hyung Soon ;
Cho, Yong Jae ;
Lim, Young Rok ;
Jung, Chan Su ;
Jang, Dong Myung ;
Park, Jeunghee ;
Shojaei, Fazel ;
Kang, Hong Seok .
ACS NANO, 2013, 7 (12) :11103-11111