Insights into the mechanism of molecular imprinting by immersion precipitation phase inversion of polymer blends via a detailed morphology analysis of porous membranes

被引:13
作者
Ulbricht, M [1 ]
Malaisamy, R [1 ]
机构
[1] Univ Duisburg Essen, Lehrstuhl Tech Chem 2, D-45117 Essen, Germany
关键词
D O I
10.1039/b416186f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous membranes have been prepared by immersion precipitation phase inversion of cellulose acetate-sulfonated polysulfone (CA-SPS) blends with the compositions 85 : 15, 95 : 5 and 100 : 0 (wt%), and molecularly imprinted polymer ( MIP) materials, prepared with the fluorescent dye Rhodamine B ( RhB), and Blanks, prepared without the template RhB, have been analysed by scanning force microscopy ( SFM), scanning electron microscopy ( SEM) and gas adsorption isotherm method ( BET). RhB binding data from solid phase extraction experiments allowed an estimation of imprinting efficiency as a function of blend composition: 95 : 5 > 85 : 15 > 100 : 0. SEM revealed an asymmetric cross-section morphology with nodules in the top layer and macrovoids in the support layer which indicated instantaneous demixing as the overall mechanism of polymer solidification. SEM at high resolution and SFM enabled a detailed analysis of the top layer morphology, in particular the estimation of the nodule size. Overall, significant differences in pore structure between MIP and Blank, as a function of the polymer blend composition were found; the magnitude of these differences, measured by SEM, SFM and BET, clearly correlated with the imprinting efficiency. For the CA-SPS 95 : 5 blend, the characteristic nodule size was much smaller for the MIP than for the Blank. Hence, the fixation of imprinted sites occurred mainly in small polymer particles, which were formed during a very fast demixing upon contact with the non-solvent. Further, the addition of the template to the CA-SPS blend solution seemed to facilitate the demixing after contact with the precipitation bath water, presumably via a complexation of the RhB with the sulfonic acid groups of SPS.
引用
收藏
页码:1487 / 1497
页数:11
相关论文
共 35 条
[1]   MICROSTRUCTURES IN PHASE INVERSION MEMBRANES .2. THE ROLE OF A POLYMERIC ADDITIVE [J].
BOOM, RM ;
WIENK, IM ;
VANDENBOOMGAARD, T ;
SMOLDERS, CA .
JOURNAL OF MEMBRANE SCIENCE, 1992, 73 (2-3) :277-292
[2]  
Bowen WR, 2000, SURF INTERFACE ANAL, V29, P544, DOI 10.1002/1096-9918(200008)29:8<544::AID-SIA901>3.0.CO
[3]  
2-4
[4]   SURFACE PORE STRUCTURES OF MICROFILTRATION AND ULTRAFILTRATION MEMBRANES IMAGED WITH THE ATOMIC FORCE MICROSCOPE [J].
DIETZ, P ;
HANSMA, PK ;
INACKER, O ;
LEHMANN, HD ;
HERRMANN, KH .
JOURNAL OF MEMBRANE SCIENCE, 1992, 65 (1-2) :101-111
[5]   Molecularly imprinted polymers and their use in biomimetic sensors [J].
Haupt, K ;
Mosbach, K .
CHEMICAL REVIEWS, 2000, 100 (07) :2495-2504
[6]   Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography [J].
Hennion, MC .
JOURNAL OF CHROMATOGRAPHY A, 1999, 856 (1-2) :3-54
[7]   THERMODYNAMICS OF FORMATION OF POROUS POLYMERIC MEMBRANE BY PHASE-SEPARATION METHOD .1. NUCLEATION AND GROWTH OF NUCLEI [J].
KAMIDE, K ;
IIJIMA, H ;
MATSUDA, S .
POLYMER JOURNAL, 1993, 25 (11) :1113-1131
[8]   DETERMINATION OF PORE-SIZE AND PORE-SIZE DISTRIBUTION .1. ADSORBENTS AND CATALYSTS [J].
KANEKO, K .
JOURNAL OF MEMBRANE SCIENCE, 1994, 96 (1-2) :59-89
[9]   Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy [J].
Kim, JY ;
Lee, HK ;
Kim, SC .
JOURNAL OF MEMBRANE SCIENCE, 1999, 163 (02) :159-166
[10]   Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin [J].
Kobayashi, T ;
Reddy, PS ;
Ohta, M ;
Abe, M ;
Fujii, N .
CHEMISTRY OF MATERIALS, 2002, 14 (06) :2499-2505